Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O 2 and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O 2 /CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN. © 2012 Oliveira et al.

Registro:

Documento: Artículo
Título:Role of PheE15 Gate in Ligand Entry and Nitric Oxide Detoxification Function of Mycobacterium tuberculosis Truncated Hemoglobin N
Autor:Oliveira, A.; Singh, S.; Bidon-Chanal, A.; Forti, F.; Martí, M.A.; Boechi, L.; Estrin, D.A.; Dikshit, K.L.; Luque, F.J.
Filiación:Department of Physical Chemistry and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona - Recinte Torribera, Santa Coloma de Gramenet, Spain
CSIR-Institute of Microbial Technology, Chandigarh, India
Dept. de Quimica Inorganica, Analitica y Quimica Fisica/Inst. de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:alanine; dioxygenase; heme; isoleucine; nitric oxide dioxygenase; oxygen; phenylalanine; phenylalanine 15; truncated hemoglobin; truncated hemoglobin N; tryptophan; tyrosine; unclassified drug; article; conformational transition; controlled study; detoxification; down regulation; enzyme activity; ligand binding; molecular dynamics; mutant; mutational analysis; Mycobacterium tuberculosis; nonhuman; oxidation; oxygen affinity; site directed mutagenesis; structure analysis; wild type; Bacterial Proteins; Binding Sites; Carbon Monoxide; Computer Simulation; Crystallography, X-Ray; Ligands; Mutagenesis, Site-Directed; Mycobacterium tuberculosis; Nitric Oxide; Oxygen; Phenylalanine; Protein Structure, Tertiary; Truncated Hemoglobins; Mycobacterium tuberculosis
Año:2012
Volumen:7
Número:11
DOI: http://dx.doi.org/10.1371/journal.pone.0049291
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:alanine, 56-41-7, 6898-94-8; dioxygenase, 37292-90-3; heme, 14875-96-8; isoleucine, 7004-09-3, 73-32-5; oxygen, 7782-44-7; phenylalanine, 3617-44-5, 63-91-2; tryptophan, 6912-86-3, 73-22-3; tyrosine, 16870-43-2, 55520-40-6, 60-18-4; Bacterial Proteins; Carbon Monoxide, 630-08-0; Ligands; Nitric Oxide, 10102-43-9; Oxygen, 7782-44-7; Phenylalanine, 63-91-2; Truncated Hemoglobins
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v7_n11_p_Oliveira.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v7_n11_p_Oliveira

Referencias:

  • Couture, M., Yeh, S.R., Wittenberg, B.A., Wittenberg, J.B., Ouellet, Y., A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis (1999) Proc Natl Acad Sci USA, 96, pp. 11223-11228
  • Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B.A., Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide (2002) Proc Natl Acad Sci USA, 99, pp. 5902-5907
  • Pathania, R., Navani, N.K., Gardner, A.M., Gardner, P.R., Dikshit, K.L., Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli (2002) Mol Microbiol, 45, pp. 1303-1314
  • Pawaria, S., Lama, A., Raje, M., Dikshit, K.L., Responses of Mycobacterium tuberculosis hemoglobin promoters to in vitro and in vivo growth conditions (2008) Appl Environ Microbiol, 74, pp. 3512-3522
  • Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme (2001) EMBO J, 20, pp. 3902-3909
  • Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J., Heme-ligand tunneling in Group I truncated hemoglobins (2004) J Biol Chem, 279, pp. 21520-21525
  • Crespo, A., Marti, M.A., Kalko, S.G., Morreale, A., Orozco, M., Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism (2005) J Am Chem Soc, 127, pp. 4433-4444
  • Bidon-Chanal, A., Marti, M.A., Crespo, A., Milani, M., Orozco, M., Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N (2006) Proteins, 64, pp. 457-464
  • Lama, A., Pawaria, S., Bidon-Chanal, A., Anand, A., Gelpí, J.L., Role of Pre-A motif in nitric oxide scavenging by truncated hemoglobin, HbN, of Mycobacterium tuberculosis (2009) J Biol Chem, 284, pp. 14457-14468
  • Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Structural bases for heme binding and diatomic ligand recognition in truncated hemoglobins (2005) J Inorg Biochem, 99, pp. 97-109
  • Ascenzi, P., Bolognesi, M., Milani, M., Guertin, M., Visca, P., Mycobacterial truncated hemoglobins: From genes to functions (2007) Gene, 398, pp. 42-51
  • Lama, A., Pawaria, S., Dikshit, K.L., Oxygen binding and NO scavenging properties of truncated hemoglobin, HbN, of Mycobacterium smegmatis (2006) FEBS Lett, 580, pp. 4031-4041
  • Kaur, R., Pathania, R., Sharma, V., Mande, S.C., Dikshit, K.L., Chimeric vitreoscilla hemoglobin (VHb) carrying a flavoreductase domain relieves nitrosative stress in Escherichia coli: New insight into the functional role of VHb (2002) Appl Environ Microbiol, 68, pp. 152-160
  • Appleby, C.A., Purification of Rhizobium cytochromes P-450 (1978) Methods Enzymol, 52, pp. 157-166
  • Gardner, P.R., Nitric oxide dioxygenase: an enzymic function for flavoglobin (1998) Proc Natl Acad Sci USA, 95, pp. 10378-10383
  • Giardina, B., Amiconi, G., Measurement of binding of gaseous and nongaseous ligands to hemoglobins by conventional spectrophotometric procedures (1981) Methods Enzymol, 76, pp. 417-427
  • Rohlfs, R.J., Mathews, A.J., Carver, T.E., Olson, J.S., Springer, B.A., The effects of amino acid substitution at position E7 (residue 64) on the kinetics of ligand binding to sperm whale myoglobin (1990) J Biol Chem, 265, pp. 3168-3176
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J Chem Phys, 79, pp. 926-935
  • Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular Dynamics of n-alkanes (1977) J Comput Phys, 23, pp. 327-341
  • Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An N log(N) method for Ewald sums in large systems (1993) J Chem Phys, 98, pp. 10089-10092
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2006) Proteins, 65, pp. 712-725
  • Case, D.A., Darden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., AMBER, , version 10, University of California, San Francisco, CA, 2008
  • García, A., Large-amplitude nonlinear motions in proteins (1992) Phys Rev Lett, 68, pp. 2696-2699
  • Amadei, A., Linssen, A.B., Berendsen, H.J.C., Essential dynamics of proteins (1993) Proteins, 17, pp. 412-425
  • Schmidtke, P., Bidon-Chanal, A., Luque, F.J., Barril, X., MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories (2011) Bioinformatics, 27, pp. 3276-3285
  • Jarzynski, C., Non equilibrium equality for free energy differences (1977) Phys Rev Lett, 78, pp. 2690-2693
  • Le Guilloux, V., Schmidtke, P., Tuffery, P., Fpocket: an open source platform for ligand pocket detection (2009) BMC Bioinformatics, 10, p. 168
  • Savard, P.Y., Daigle, R., Morin, S., Sebilo, A., Meindre, F., Structure and dynamics of Mycobacterium tuberculosis truncated hemoglobin N: insights from NMR spectroscopy and molecular dynamics simulations (2011) Biochemistry, 50, pp. 11121-11130
  • Bidon-Chanal, A., Martí, M.A., Estrin, D.A., Luque, F.J., Dynamical regulation of ligand migration by a gate-opening molecular switch in truncated hemoglobin-N from Mycobacterium tuberculosis (2007) J Am Chem Soc, 129, pp. 6782-6788
  • Mukai, M., Ouellet, Y., Guertin, M., Yeh, S.R., NO binding induced conformational changes in a truncated hemoglobin from Mycobacterium tuberculosis (2004) Biochemistry, 43, pp. 2764-2770
  • Dantsker, D., Samuni, U., Ouellet, Y., Wittenberg, B.A., Wittenberg, J.B., Viscosity-dependent relaxation significantly modulates the kinetics of CO recombination in the truncated hemoglobin TrHbN from Mycobacterium tuberculosis (2004) J Biol Chem, 279, pp. 38844-38853
  • Perez, A., Blas, J.R., Rueda, M., Lopez-Bes, J.M., de la Cruz, X., Exploring the essential dynamics of B-DNA (2005) J Chem Theory Comput, 1, pp. 790-800
  • Daigle, R., Guertin, M., Lagüe, P., Structural characterization of the tunnels of Mycobacterium tuberculosis truncated hemoglobin N from molecular dynamics simulations (2009) Proteins, 75, pp. 735-747
  • Daigle, R., Rousseau, J.A., Guertin, M., Lagüe, P., Theoretical investigations of nitric oxide channeling in Mycobacterium tuberculosis truncated hemoglobin N. Biophys J (2009), 97, pp. 2967-2977

Citas:

---------- APA ----------
Oliveira, A., Singh, S., Bidon-Chanal, A., Forti, F., Martí, M.A., Boechi, L., Estrin, D.A.,..., Luque, F.J. (2012) . Role of PheE15 Gate in Ligand Entry and Nitric Oxide Detoxification Function of Mycobacterium tuberculosis Truncated Hemoglobin N. PLoS ONE, 7(11).
http://dx.doi.org/10.1371/journal.pone.0049291
---------- CHICAGO ----------
Oliveira, A., Singh, S., Bidon-Chanal, A., Forti, F., Martí, M.A., Boechi, L., et al. "Role of PheE15 Gate in Ligand Entry and Nitric Oxide Detoxification Function of Mycobacterium tuberculosis Truncated Hemoglobin N" . PLoS ONE 7, no. 11 (2012).
http://dx.doi.org/10.1371/journal.pone.0049291
---------- MLA ----------
Oliveira, A., Singh, S., Bidon-Chanal, A., Forti, F., Martí, M.A., Boechi, L., et al. "Role of PheE15 Gate in Ligand Entry and Nitric Oxide Detoxification Function of Mycobacterium tuberculosis Truncated Hemoglobin N" . PLoS ONE, vol. 7, no. 11, 2012.
http://dx.doi.org/10.1371/journal.pone.0049291
---------- VANCOUVER ----------
Oliveira, A., Singh, S., Bidon-Chanal, A., Forti, F., Martí, M.A., Boechi, L., et al. Role of PheE15 Gate in Ligand Entry and Nitric Oxide Detoxification Function of Mycobacterium tuberculosis Truncated Hemoglobin N. PLoS ONE. 2012;7(11).
http://dx.doi.org/10.1371/journal.pone.0049291