Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We assessed the intracellular association states of the Parkinson's disease related protein α-synuclein (AS) in living cells by transfection with a functional recombinant mutant protein (AS-C4) bearing a tetracysteine tag binding the fluorogenic biarsenical ligands FlAsH and ReAsH, The aggregation states of AS-C4 were assessed by in situ microscopy of molecular translational mobility with FRAP (fluorescence recovery after photobleaching) and of local molecular density with confocal fluorescence anisotropy (CFA). FRAP recovery was quantitative and rapid in regions of free protein, whereas AS in larger aggregates was>80% immobile. A small 16% recovery characterized by an apparent diffusion constant of 0.03-0.04 μm 2/s was attributed to the dynamics of smaller, associated forms of AS-C4 and the exchange of mobile species with the larger immobile aggregates. By CFA, the larger aggregates exhibited high brightness and very low anisotropy, consistent with homoFRET between closely packed AS, for which a Förster distance (R o) of 5.3 nm was calculated. Other bright regions had high anisotropy values, close to that of monomeric AS, and indicative of membrane-associated protein with both low mobility and low degree of association. The anisotropy-fluorescence intensity correlations also revealed regions of free protein or of small aggregates, undetectable by conventional fluorescence imaging alone. The combined strategy (FRAP+CFA) provides a highly sensitive means for elucidating both the dynamics and structural features of protein aggregates and other intracellular complexes in living cells, and can be extended to other amyloid systems and to drug screening protocols. © 2011 Roberti et al.

Registro:

Documento: Artículo
Título:Confocal fluorescence anisotropy and FRAP imaging of α-synuclein amyloid aggregates in living cells
Autor:Roberti, M.J.; Jovin, T.M.; Jares-Erijman, E.
Filiación:Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CIHIDECAR, CONICET, Buenos Aires, Argentina
Palabras clave:alpha synuclein; amyloid; cysteine; FIAsH ligand; ligand; membrane protein; monomer; REAsH ligand; recombinant mutant protein; recombinant protein; tetracysteine; unclassified drug; alpha synuclein; amyloid; cysteine; fluorescent dye; hybrid protein; anisotropy; article; brightness; chemical structure; confocal fluorescence anisotropy; controlled study; diffusion coefficient; fluorescence microscopy; fluorescence recovery after photobleaching; genetic transfection; human; human cell; human tissue; in situ hybridization; molecular density; molecular dynamics; Parkinson disease; protein aggregation; protein structure; quantitative analysis; translation regulation; algorithm; chemistry; confocal microscopy; fluorescence; fluorescence polarization; genetics; kinetics; metabolism; methodology; mutation; single cell analysis; tumor cell line; Algorithms; alpha-Synuclein; Amyloid; Cell Line, Tumor; Cysteine; Fluorescence; Fluorescence Polarization; Fluorescence Recovery After Photobleaching; Fluorescent Dyes; Humans; Kinetics; Microscopy, Confocal; Mutation; Recombinant Fusion Proteins; Single-Cell Analysis; Transfection
Año:2011
Volumen:6
Número:8
DOI: http://dx.doi.org/10.1371/journal.pone.0023338
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:alpha synuclein, 154040-18-3; amyloid, 11061-24-8; cysteine, 4371-52-2, 52-89-1, 52-90-4; Amyloid; Cysteine, 52-90-4; Fluorescent Dyes; Recombinant Fusion Proteins; alpha-Synuclein
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v6_n8_p_Roberti.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v6_n8_p_Roberti

Referencias:

  • Herczenik, E., Gebbink, M.F., Molecular and cellular aspects of protein misfolding and disease (2008) FASEB J, 22, pp. 2115-2133
  • Eisenberg, D., Nelson, R., Sawaya, M.R., Balbirnie, M., Sambashivan, S., The structural biology of protein aggregation diseases: Fundamental questions and some answers (2006) Acc Chem Res, 39, pp. 568-575
  • Uversky, V.N., Fink, A.L., (2006) Protein Misfolding, Aggregation, and Conformational Diseases: Part A: Protein Aggregation and Conformational Diseases: Springer Science+Business Media
  • Auluck, P.K., Caraveo, G., Lindquist, S., α-Synuclein: Membrane interactions and toxicity in Parkinson's disease (2010) Annu Rev Cell Dev Biol, 26, pp. 211-233
  • Madine, J., Middleton, D.A., Targeting alpha-synuclein aggregation for Parkinson's disease treatement (2009) Drug Future, 34, pp. 655-663
  • Outeiro, T.F., Ferreira, J., Current and future therapeutic strategies for Parkinson's disease (2009) Curr Pharm Des, 15, pp. 3968-3976
  • Bertoncini, C.W., Celej, M.S., Small molecule fluorescent probes for the detection of amyloid self-assembly in vitro and in vivo (2011) Curr Protein Pept Sci, 12, pp. 205-220
  • Munishkina, L.A., Fink, A.L., Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins (2007) Biochim Biophys Acta, 1768, pp. 1862-1885
  • Kim, S., Nollen, E.A., Kitagawa, K., Bindokas, V.P., Morimoto, R.I., Polyglutamine protein aggregates are dynamic (2002) Nat Cell Biol, 4, pp. 826-831
  • Nehls, S., Snapp, E.L., Cole, N.B., Zaal, K.J.M., Kenworthy, A.K., Dynamics and retention of misfolded proteins in native ER membranes (2000) Nat Cell Biol, 2, pp. 288-295
  • Padrick, S.B., Miranker, A.D., Islet amyloid: phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis (2002) Biochemistry, 41, pp. 4694-4703
  • Allsop, D., Swanson, L., Moore, S., Davies, Y., York, A., Fluorescence anisotropy: a method for early detection of Alzheimer beta-peptide (Abeta) aggregation (2001) Biochem Biophys Res Comm, 285, pp. 58-63
  • Koo, B.W., Miranker, A.D., Contribution of the intrinsic disulfide to the assembly mechanism of islet amyloid (2005) Protein Sci, 14, pp. 231-239
  • Mukhopadhyay, S., Nayak, P.K., Udgaonkar, J.B., Krishnamoorthy, G., Characterization of the formation of amyloid protofibrils from barstar by mapping residue-specific fluorescence dynamics (2006) J Mol Biol, 358, pp. 935-942
  • Luk, K.C., Hyde, E.G., Trojanowski, J.Q., Lee, V.M., Sensitive fluorescence polarization technique for rapid screening of alpha-synuclein oligomerization/fibrillization inhibitors (2007) Biochemistry, 46, pp. 12522-12529
  • Celej, M.S., Jares-Erijman, E.A., Jovin, T.M., Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of alpha-synuclein (2008) Biophys J, 94, pp. 4867-4879
  • Thirunavukkuarasu, S., Jares-Erijman, E.A., Jovin, T.M., Multiparametric fluorescence detection of early stages in the amyloid protein aggregation of pyrene-labeled alpha-synuclein (2008) J Mol Biol, 378, pp. 1064-1073
  • Kamp, F., Beyer, K., Binding of alpha-synuclein affects the lipid packing in bilayers of small vesicles (2006) J Biol Chem, 281, pp. 9251-9259
  • Smith, D.P., Tew, D.J., Hill, A.F., Bottomley, S.P., Masters, C.L., Formation of a high affinity lipid-binding intermediate during the early aggregation phase of alpha-synuclein (2008) Biochemistry, 47, pp. 1425-1434
  • Lidke, D.S., Nagy, P., Barisas, B.G., Heintzmann, R., Post, J.N., Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET) (2003) Biochem Soc Trans, 31, pp. 1020-1027
  • Jovin, T.M., Lidke, D.S., Post, J.N., Dynamic and static fluorescence anisotropy in biological microscopy (rFLIM and emFRET) (2004) Proc SPIE Int Soc Opt Eng, 5323, pp. 1-12
  • van Ham, T.J., Esposito, A., Kumita, J.R., Hsu, S.T.D., Schierle, G.S.K., Towards multiparametric fluorescent imaging of amyloid formation: Studies of a YFP model of alpha-Synuclein aggregation (2010) J Mol Biol, 395, pp. 627-642
  • Adams, S.R., Campbell, R.E., Gross, L.A., Martin, B.R., Walkup, G.K., New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications (2002) J Am Chem Soc, 124, pp. 6063-6076
  • Ross, R.A., Spengler, B.A., Biedler, J.L., Coordinate morphological and biochemical interconversion of human neuroblastoma cells (1983) J Natl Cancer Inst, 71, pp. 741-749
  • Roberti, M.J., Bertoncini, C.W., Klement, R., Jares-Erijman, E.A., Jovin, T.M., Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged alpha-synuclein (2007) Nat Methods, 4, pp. 345-351
  • Lippincott-Schwartz, J., Snapp, E., Kenworthy, A., Studying protein dynamics in living cells (2001) Nat Rev Mol Cell Biol, 2, pp. 444-456
  • Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W., Mobility measurement by analysis of fluorescence photobleaching recovery kinetics (1976) Biophys J, 16, pp. 1055-1069
  • Nath, S., Meuvis, J., Hendrix, J., Carl, S.A., Engelborghs, Y., Early aggregation steps in alpha-synuclein as measured by FCS and FRET: evidence for a contagious conformational change (2010) Biophys J, 98, pp. 1302-1311
  • Gerard, M., Debyser, Z., Desender, L., Kahle, P.J., Baert, J., The aggregation of alpha-synuclein is stimulated by FK506 binding proteins as shown by fluorescence correlation spectroscopy (2006) FASEB J, 20, pp. 524-526
  • Dix, J.A., Verkman, A.S., Crowding effects on diffusion in solutions and cells (2008) Annu Rev Biophys, 37, pp. 247-263
  • Valeur, B., (2002) Molecular fluorescence: Principles and applications, , Weinheim, Wiley-VCH
  • Roberti, M.J., Morgan, M., Menendez, G., Pietrasanta, L.I., Jovin, T.M., Quantum dots as ultrasensitive nanoactuators and sensors of amyloid aggregation in live cells (2009) J Am Chem Soc, 131, pp. 8102-8107
  • Roberti, M.J., Giordano, L., Jovin, T.M., Jares-Erijman, E.A., FRET Imaging by kt/kf (2011) Chem Phys Chem, 12, pp. 563-566

Citas:

---------- APA ----------
Roberti, M.J., Jovin, T.M. & Jares-Erijman, E. (2011) . Confocal fluorescence anisotropy and FRAP imaging of α-synuclein amyloid aggregates in living cells. PLoS ONE, 6(8).
http://dx.doi.org/10.1371/journal.pone.0023338
---------- CHICAGO ----------
Roberti, M.J., Jovin, T.M., Jares-Erijman, E. "Confocal fluorescence anisotropy and FRAP imaging of α-synuclein amyloid aggregates in living cells" . PLoS ONE 6, no. 8 (2011).
http://dx.doi.org/10.1371/journal.pone.0023338
---------- MLA ----------
Roberti, M.J., Jovin, T.M., Jares-Erijman, E. "Confocal fluorescence anisotropy and FRAP imaging of α-synuclein amyloid aggregates in living cells" . PLoS ONE, vol. 6, no. 8, 2011.
http://dx.doi.org/10.1371/journal.pone.0023338
---------- VANCOUVER ----------
Roberti, M.J., Jovin, T.M., Jares-Erijman, E. Confocal fluorescence anisotropy and FRAP imaging of α-synuclein amyloid aggregates in living cells. PLoS ONE. 2011;6(8).
http://dx.doi.org/10.1371/journal.pone.0023338