Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The subcellular localization and physiological functions of biomolecules are closely related and thus it is crucial to precisely determine the distribution of different molecules inside the intracellular structures. This is frequently accomplished by fluorescence microscopy with well-characterized markers and posterior evaluation of the signal colocalization. Rigorous study of colocalization requires statistical analysis of the data, albeit yet no single technique has been established as a standard method. Indeed, the few methods currently available are only accurate in images with particular characteristics. Here, we introduce a new algorithm to automatically obtain the true colocalization between images that is suitable for a wide variety of biological situations. To proceed, the algorithm contemplates the individual contribution of each pixel's fluorescence intensity in a pair of images to the overall Pearsońs correlation and Manders' overlap coefficients. The accuracy and reliability of the algorithm was validated on both simulated and real images that reflected the characteristics of a range of biological samples. We used this algorithm in combination with image restoration by deconvolution and time-lapse confocal microscopy to address the localization of MEK1 in the mitochondria of different cell lines. Appraising the previously described behavior of Akt1 corroborated the reliability of the combined use of these techniques. Together, the present work provides a novel statistical approach to accurately and reliably determine the colocalization in a variety of biological images. © 2011 Villalta et al.

Registro:

Documento: Artículo
Título:New algorithm to determine true colocalization in combination with image restoration and time-lapse confocal microscopy to map Kinases in mitochondria
Autor:Villalta, J.I.; Galli, S.; Iacaruso, M.F.; Arciuch, V.G.A.; Poderoso, J.J.; Jares-Erijman, E.A.; Pietrasanta, L.I.
Filiación:Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CIHIDECAR, CONICET, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Laboratory of Oxygen Metabolism, University Hospital José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Cell and Developmental Biology, University College London, London, United Kingdom
Department of Physiology and Pharmacology, University College London, London, United Kingdom
Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States
Palabras clave:mitogen activated protein kinase; biological marker; green fluorescent protein; accuracy; algorithm; article; automation; cellular distribution; confocal microscopy; controlled study; fluorescence imaging; human; human cell; image analysis; image reconstruction; mitochondrion; molecular imaging; optical resolution; protein localization; reliability; signal detection; time lapse imaging; algorithm; animal; cell strain 3T3; confocal microscopy; fluorescence microscopy; HeLa cell; image processing; metabolism; methodology; mouse; physiology; plasmid; signal transduction; time; Algorithms; Animals; Biological Markers; Green Fluorescent Proteins; HeLa Cells; Humans; Image Processing, Computer-Assisted; MAP Kinase Signaling System; Mice; Microscopy, Confocal; Microscopy, Fluorescence; Mitochondria; NIH 3T3 Cells; Plasmids; Time Factors
Año:2011
Volumen:6
Número:4
DOI: http://dx.doi.org/10.1371/journal.pone.0019031
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:mitogen activated protein kinase, 142243-02-5; Biological Markers; Green Fluorescent Proteins, 147336-22-9
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v6_n4_p_Villalta.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v6_n4_p_Villalta

Referencias:

  • Manders, E.M.M., Stap, J., Brakenhoff, G.J., Vandriel, R., Aten, J.A., Dynamics of three-dimensional replication patterns during the s-phase, analyzed by double labeling of DNA and confocal microscopy (1992) J Cell Sci, 103, pp. 857-862
  • Manders, E.M.M., Verbeek, F.J., Aten, J.A., Measurement of colocalization of objects in dual-color confocal images (1993) J Microsc, 169, pp. 375-382
  • Costes, S.V., Daelemans, D., Cho, E.H., Dobbin, Z., Pavlakis, G., Automatic and quantitative measurement of protein-protein colocalization in live cells (2004) Biophys J, 86, pp. 3993-4003
  • Li, Q., Lau, A., Morris, T.J., Guo, L., Fordyce, C.B., A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization (2004) J Neurosci, 24, pp. 4070-4081
  • Fletcher, P., Scriven, D., Schulson, M., Moore, E., Multi-image colocalization and its statistical significance (2010) Biophys J, 99, pp. 1996-2005
  • Ramírez, O., García, A., Rojas, R., Couve, A., Hartel, S., Confined displacement algorithm determines true and random colocalization in fluorescence microscopy (2010) J Micros, 239, pp. 173-183
  • Bolte, S., Cordelieres, P., A guided tour into subcellular colocalization analysis in light microscopy (2006) J Microsc, 224, pp. 213-232
  • Comeau, J., Costantino, S., Wiseman, P., A Guide to Accurate Fluorescence Microscopy Colocalization Measurements (2006) Biophys J, 91, pp. 4611-4622
  • Sedarat, F., Lin, E., Moore, E.D., Tibbits, G.F., Deconvolution of confocal images of dihydropyridine and ryanodine receptors in developing cardiomyocytes (2004) J Appl Physiol, 97, pp. 1098-1103
  • Craig, E.A., Stevens, M.V., Vaillancourt, R.R., Camenisch, T.D., MAP3Ks as central regulators of cell fate during development (2008) Dev Dyn, 237, pp. 3102-3114
  • Seger, R., Krebs, E.G., The MAPK signaling cascade (1995) FASEB J, 9, pp. 726-735
  • Zheng, C.F., Guan, K.L., Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases (1993) J Biol Chem, 268, pp. 23933-23939
  • Seger, R., Ahn, N.G., Posada, J., Munar, E.S., Jensen, A.M., Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells (1992) J Biol Chem, 267, pp. 14373-14381
  • Pearson, G., Robinson, F., Beers Gibson, T., Xu, B., Karandikar, M., Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions (2001) Endocr Rev, 22, pp. 153-183
  • Fukuda, M., Gotoh, I., Gotoh, Y., Nishida, E., Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal (1996) J Biol Chem, 271, pp. 20024-20028
  • Jaaro, H., Rubinfeld, H., Hanoch, T., Seger, R., Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation (1997) Proc Natl Acad Sci USA, 94, pp. 3742-3747
  • Yao, Z., Flash, I., Raviv, Z., Yung, Y., Asscher, S., Non-regulated and stimulated mechanisms cooperate in the nuclear accumulation of MEK1 (2001) Oncogene, 20, pp. 7588-7596
  • Alonso, M., Melani, M., Converso, D.P., Jaitovich, A., Paz, C., Mitochondrial extracellular signal-regulated kinases 1/2 (ERK1/2) are modulated during brain development (2004) J Neurochem, 89, pp. 248-256
  • Galli, S., Antico-Arciuch, V.G., Poderoso, C., Converso, D.P., Zhou, Q., Tumor cell phenotype is sustained by selective MAPK oxidation in mitochondria (2008) PLoS One, 3, pp. e2379
  • Galli, S., Jahn, O., Hitt, R., Hesse, D., Opitz, L., A new paradigm for MAPK: structural interactions of hERK1 with mitochondria in HeLa cells (2009) PLoS One, 4, pp. e7541
  • Poderoso, C., Converso, D.P., Maloberti, P., Duarte, A., Neuman, I., A mitochondrial kinase complex is essential to mediate an ERK1/2-dependent phosphorylation of a key regulatory protein in steroid biosynthesis (2008) PLOS One, 3, pp. e1443
  • Antico-Arciuch, V.G., Galli, S., Franco, M.C., Lam, P.Y., Cadenas, E., Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression (2009) PLoS One, 4, pp. e7523
  • Bronfman, F.C., Tcherpakov, M., Jovin, T.M., Fainzilber, M., Ligand-induced internalization of the p75 neurotrophin receptor: a slow route to the signaling endosome (2003) J Neurosci, 23, pp. 3209-3220
  • Lidke, D.S., Huang, F., Post, J.N., Rieger, B., Wilsbacher, J., ERK nuclear translocation is dimerization-independent but controlled by the rate of phosphorylation (2009) J Biol Chem, 285, pp. 3092-3102
  • Horgan, A.M., Stork, P.J., Examining the mechanism of Erk nuclear translocation using green fluorescent protein (2001) Exp Cell Res, 285, pp. 208-220
  • Zinchuk, V., Zynchuk, O., Okada, T., Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena (2007) Acta Histochem Cytochem, 40, pp. 101-111
  • Barlow, A., MacLeod, A., Noppen, S., Sanderson, J., Guerin, J., Colocalization analysis in fluorescence micrographs: verification of a more accurate calculation of Pearson's correlation coefficient (2010) Microsc Microanal, 16, pp. 710-724
  • Galmiche, A., Fueller, J., Santel, A., Krohne, G., Wittig, I., Isoform-specific interaction of C-RAF with mitochondria (2008) J Biol Chem, 283, pp. 14857-61486
  • Ramay, H.R., Vendelin, M., Diffusion restrictions surrounding mitochondria: a mathematical model of heart muscle fibers (2009) Biophys J, 97, pp. 443-452
  • Monick, M.M., Powers, L.S., Barrett, C.W., Hinde, S., Ashare, A., Constitutive ERK MAPK activity regulates macrophage ATP production and mitochondrial integrity (2008) J Immunol, 180, pp. 7485-7496

Citas:

---------- APA ----------
Villalta, J.I., Galli, S., Iacaruso, M.F., Arciuch, V.G.A., Poderoso, J.J., Jares-Erijman, E.A. & Pietrasanta, L.I. (2011) . New algorithm to determine true colocalization in combination with image restoration and time-lapse confocal microscopy to map Kinases in mitochondria. PLoS ONE, 6(4).
http://dx.doi.org/10.1371/journal.pone.0019031
---------- CHICAGO ----------
Villalta, J.I., Galli, S., Iacaruso, M.F., Arciuch, V.G.A., Poderoso, J.J., Jares-Erijman, E.A., et al. "New algorithm to determine true colocalization in combination with image restoration and time-lapse confocal microscopy to map Kinases in mitochondria" . PLoS ONE 6, no. 4 (2011).
http://dx.doi.org/10.1371/journal.pone.0019031
---------- MLA ----------
Villalta, J.I., Galli, S., Iacaruso, M.F., Arciuch, V.G.A., Poderoso, J.J., Jares-Erijman, E.A., et al. "New algorithm to determine true colocalization in combination with image restoration and time-lapse confocal microscopy to map Kinases in mitochondria" . PLoS ONE, vol. 6, no. 4, 2011.
http://dx.doi.org/10.1371/journal.pone.0019031
---------- VANCOUVER ----------
Villalta, J.I., Galli, S., Iacaruso, M.F., Arciuch, V.G.A., Poderoso, J.J., Jares-Erijman, E.A., et al. New algorithm to determine true colocalization in combination with image restoration and time-lapse confocal microscopy to map Kinases in mitochondria. PLoS ONE. 2011;6(4).
http://dx.doi.org/10.1371/journal.pone.0019031