Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present experimental measurements and theoretical predictions of ion transport in agar gels during reversible electroporation (ECT) for conditions typical to many clinical studies found in the literature, revealing the presence of pH fronts emerging from both electrodes. These results suggest that pH fronts are immediate and substantial. Since they might give rise to tissue necrosis, an unwanted condition in clinical applications of ECT as well as in irreversible electroporation (IRE) and in electrogenetherapy (EGT), it is important to quantify their extent and evolution. Here, a tracking technique is used to follow the space-time evolution of these pH fronts. It is found that they scale in time as t1/2 characteristic of a predominantly diffusive process. Comparing ECT pH fronts with those arising in electrotherapy (EChT), another treatment applying constant electric fields whose main goal is tissue necrosis, a striking result is observed: anodic acidification is larger in ECT than in EChT, suggesting that tissue necrosis could also be greater. Ways to minimize these adverse effects in ECT are suggested. © 2011 Turjanski et al.

Registro:

Documento: Artículo
Título:The role of pH fronts in reversible electroporation
Autor:Turjanski, P.; Olaiz, N.; Maglietti, F.; Michinski, S.; Suárez, C.; Molina, F.V.; Marshall, G.
Filiación:Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Cienticas y Tecnicas, Buenos Aires, Argentina
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:acidification; article; comparative study; controlled study; electrode; electrogenetherapy; electroporation; electrostimulation therapy; gene therapy; ion transport; pH; reversible electroporation; tissue necrosis; Animals; Electrochemistry; Electrodes; Electroporation; Genetic Techniques; Genetic Therapy; Humans; Hydrogen-Ion Concentration; Models, Theoretical; Necrosis; Plasmids; Time Factors
Año:2011
Volumen:6
Número:4
DOI: http://dx.doi.org/10.1371/journal.pone.0017303
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v6_n4_p_Turjanski.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v6_n4_p_Turjanski

Referencias:

  • Mir, L., Bases and rationale of the electrochemotherapy (2006) Eur J Cancer Supp, 4, pp. 38-44
  • Serša, G., Miklavčič, D., Čemažar, M., Rudolf, Z., Pucihar, G., Electrochemotherapy in treatment of tumours (2008) Eur J Surg Oncol, 34, pp. 232-240
  • Serša, G., Miklavčič, D., Electrochemotherapy of tumours (2008) Journal of Visualized Experiments, 22. , doi:10.3791/1038
  • Mir, L., Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future (2009) Mol Biotechnol, 43, pp. 167-176
  • Quaglino, E., Iezzi, M., Mastini, C., Amici, A., Pericle, F., Electroporated dna vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice (2004) Cancer Research, 64, pp. 2858-2864
  • Sadadcharam, M., Soden, D., O'Sullivan, G., Electrochemotherapy: an emerging cancer treatment (2008) Int J Hyperthermia, 24, pp. 263-273
  • Davalos, R., Mir, L., Rubinsky, B., Tissue ablation with irreversible electroporation (2005) Ann Biomed Eng, 33, pp. 223-231
  • Al-Sakere, B., André, F., Bernat, C., Connault, E., Opolon, P., Tumor ablation with irreversible electroporation (2007) PLoS One, 2, pp. e1135
  • Pakhomov, A.G., Miklavcic, D., Markov, M.S., (2010) Advanced Electroporation Techniques in Biology and Medicine. Lecture Notes in Physics, , London, CRC Press, Taylor and Francis Group
  • Corović, S., Pavlin, M., Miklavčič, D., Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations (2007) Biomed Eng Online, 15, pp. 6-37
  • Sel, D., Lebar, A., Miklavčič, D., Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization (2007) IEEE Trans Biomed Eng, 54, pp. 773-781
  • Hu, Q., Joshi, R., Transmembrane voltage analyses in spheroidal cells in response to an intense ultrashort electrical pulse (2009) Phys Rev E Stat Nonlin Soft Matter Phys, 79, p. 011901
  • Krassowska, W., Filev, P., Modeling electroporation in a single cell (2007) Biophysical Journal, 92, pp. 404-417
  • Ying, W., Pourtaheri, N., Henriquez, C., Field stimulation of cells in suspension: use of a hybrid finite element method (2006) Conf Proc IEEE Eng Med Biol Soc, 1, pp. 2276-2279
  • Miklavčič, D., Snoj, M., Zupanic, A., Kos, B., Cemazar, M., Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy (2010) Biomed Eng Online, 23, pp. 9-10
  • Granot, Y., Rubinsky, B., Mass transfer model for drug delivery in tissue cells with reversible electroporation (2008) Int J Heat Mass Transf, 51, pp. 5610-5616
  • Nordenström, B., Electrochemical treatment of cancer I: variable response to anodic and cathodic fields (1989) Am J Clin Oncol: Cancer Clinical Trials, 12, pp. 530-536
  • Xin, Y., Organization and spread of electrochemical therapy (ECT) in China (1994) Eur J Surg Suppl, 574, pp. 25-30
  • Nilsson, E., von Euler, H., Berendson, J., Thörne, A., Wersäll, P., Electrochemical treatment of tumours (2000) Bioelectrochemistry, 51, pp. 1-11
  • Colombo, L., González, G., Marshall, G., Molina, F., Soba, A., Ion transport in tumors under electrochemical treatment: in vivo, in vitro and in silico modeling (2007) Bioelectrochemistry, 71, pp. 223-232
  • Turjanski, P., Olaiz, N., Abou-Adal, P., Suárez, C., Risk, M., ph front tracking in the electrochemical treatment (echt) of tumors: experiments and simulations (2009) Electrochimica Acta, 54, pp. 6199-6206
  • Olaiz, N., Suárez, C., Risk, M., Molina, F., Marshall, G., Tracking protein electrodenaturation fronts in the electrochemical treatment of tumors (2009) Electrochemistry Communications, 12, pp. 1388-2481
  • Marshall, G., Mocskos, P., Swinney, H.L., Huth, J.M., Buoyancy and electrically driven convection models in thin-layer electrodeposition (1999), 59, pp. 2157-2167; Finch, J., Fosh, B., Anthony, A., Slimani, E., Texler, M., Liver electrolysis: ph can reliably monitor the extent of hepatic ablation in pigs (2002) Clin Sci (Lond), 102, pp. 389-395
  • Kim, J., Cho, K., Shin, M., Lee, W., Jung, N., A novel electroporation method using a capillary and wire-type electrode (2008) Biosensors and Bioelectronics, 23, pp. 1353-1360
  • Lando, D., Haroutiunian, S., Kul'ba, A., Dalian, E., Orioli, P., Theoretical and experimental study of dna helix-coil transition in acidic and alkaline medium (1994) J Biomol Struct Dyn, 12, pp. 355-366
  • Dubey, R., Tripathi, D., A study of thermal denaturation/renaturation in dna using laser light scattering: a new approach (2005) Indian Journal of Biochemistry & Biophysics, 42, pp. 301-307
  • Rasband, W., NIH ImageJ: an image processing and analysis package (1997), http://rsb.info.nih.gov/ij/, URL. Accessed 2011 Feb 2; Marshall, G., (1986) Solución Numérica De Ecuaciones Diferenciales. Tomo II: Ecuaciones En Derivadas Parciales, , Buenos Aires, Editorial Reverté S.A
  • West, J., (1985) Physiological Basis of Medical Practice, , Baltimore, Lippincott, William & Wilkins, 11th edition
  • Newman, J., Thomas-Alyea, K., (2004) Electrochemical Systems, , Hoboken, New Jersey, John Wiley & Sons, Inc., 3rd edition
  • Odake, S., Hatae, K., Shimada, A., Iibuchi, S., Apparent diffusion coefficient of sodium chloride in cubical agar gel (1990) Agric Biol Chem, 54, pp. 2811-2817
  • de Vry, J., Martinez-Martinez, P., Losen, M., Bode, G., Temel, Y., Low current-driven micro-electroporation allows efficient in vivo delivery of nonviral dna into the adult mouse brain (2010) Molecular Therapy, 18, pp. 1183-1191
  • Damjanovic, A., Birss, V., Boudreaux, D., Electron transfer through thin anodic oxide films during the oxygen evolution reactions at Pt electrodes (1991) J Electrochem Soc, 138, p. 2549
  • Bard, A., Encyclopedia of Electrochemistry of the Elements (1973), Marcel Dekker, New York; Moore, W., Basic Physical Chemistry (1983), Prentice-Hall Int Ed, London

Citas:

---------- APA ----------
Turjanski, P., Olaiz, N., Maglietti, F., Michinski, S., Suárez, C., Molina, F.V. & Marshall, G. (2011) . The role of pH fronts in reversible electroporation. PLoS ONE, 6(4).
http://dx.doi.org/10.1371/journal.pone.0017303
---------- CHICAGO ----------
Turjanski, P., Olaiz, N., Maglietti, F., Michinski, S., Suárez, C., Molina, F.V., et al. "The role of pH fronts in reversible electroporation" . PLoS ONE 6, no. 4 (2011).
http://dx.doi.org/10.1371/journal.pone.0017303
---------- MLA ----------
Turjanski, P., Olaiz, N., Maglietti, F., Michinski, S., Suárez, C., Molina, F.V., et al. "The role of pH fronts in reversible electroporation" . PLoS ONE, vol. 6, no. 4, 2011.
http://dx.doi.org/10.1371/journal.pone.0017303
---------- VANCOUVER ----------
Turjanski, P., Olaiz, N., Maglietti, F., Michinski, S., Suárez, C., Molina, F.V., et al. The role of pH fronts in reversible electroporation. PLoS ONE. 2011;6(4).
http://dx.doi.org/10.1371/journal.pone.0017303