Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules. © 2011 Bruno et al.

Registro:

Documento: Artículo
Título:Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
Autor:Bruno, L.; Salierno, M.; Wetzler, D.E.; Despósito, M.A.; Levi, V.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
Palabras clave:dynactin; dynein adenosine triphosphatase; kinesin; molecular motor; dynactin; microtubule associated protein; molecular motor; animal cell; article; cell organelle; cell tracking; controlled study; gene dosage; in vitro study; melanosome; microtubule; molecular dynamics; nonhuman; protein function; protein interaction; protein stiffness; protein transport; quantitative analysis; viscoelasticity; Xenopus laevis; animal; biological model; biomechanics; cell survival; elasticity; mechanics; melanosome; metabolism; microtubule; viscosity; Animals; Biomechanics; Cell Survival; Elasticity; Mechanical Processes; Melanosomes; Microtubule-Associated Proteins; Microtubules; Models, Biological; Molecular Motor Proteins; Protein Transport; Viscosity; Xenopus laevis
Año:2011
Volumen:6
Número:4
DOI: http://dx.doi.org/10.1371/journal.pone.0018332
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:Microtubule-Associated Proteins; Molecular Motor Proteins; dynactin, 144198-36-7
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v6_n4_p_Bruno.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v6_n4_p_Bruno

Referencias:

  • Mallik, R., Gross, S.P., Molecular motors: strategies to get along (2004) Curr Biol, 14, pp. R971-R982
  • Vale, R.D., The molecular motor toolbox for intracellular transport (2003) Cell, 112, pp. 467-480
  • Nascimento, A.A., Roland, J.T., Gelfand, V.I., Pigment cells: a model for the study of organelle transport (2003) Annu Rev Cell Dev Biol, 19, pp. 469-491
  • Rozdzial, M.M., Haimo, L.T., Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation (1986) Cell, 47, pp. 1061-1070
  • Sammak, P.J., Adams, S.R., Harootunian, A.T., Schliwa, M., Tsien, R.Y., Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging (1992) J Cell Biol, 117, pp. 57-72
  • Tuma, M.C., Zill, A., Le Bot, N., Vernos, I., Gelfand, V., Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores (1998) J Cell Biol, 143, pp. 1547-1558
  • Rogers, S.L., Karcher, R.L., Roland, J.T., Minin, A.A., Regulation of melanosome movement in the cell cycle by reversible association with myosin V (1999) J Cell Sci, 146, pp. 1265-1276
  • Nilsson, H., Wallin, M., Evidence for several roles of dynein in pigment transport in melanophores (1997) Cell Motil Cytoskeleton, 38, pp. 397-409
  • Ishii, Y., Yanagida, T., Single molecule measurments and molecular motors (2003) Molecular Motors, , In: Schliwa M, editors, Munchen, Wiley-VCH
  • Levi, V., Serpinskaya, A.S., Gratton, E., Gelfand, V., Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors (2006) Biophys J, 90, pp. 318-327
  • Brunstein, M., Bruno, L., Desposito, M., Levi, V., Anomalous dynamics of melanosomes driven by myosin-V in Xenopus laevis melanophores (2009) Biophys J, 97, pp. 1548-1557
  • Bruno, L., Echarte, M.M., Levi, V., Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles (2008) Cell Biochem Biophys, 52, pp. 191-201
  • Levi, V., Gelfand, V.I., Serpinskaya, A.S., Gratton, E., Melanosomes Transported by Myosin-V in Xenopus Melanophores Perform Slow 35 nm Steps (2006) Biophys J, 90, pp. L7-L9
  • Svoboda, K., Block, S.M., Force and velocity measured for single kinesin molecules (1994) Cell, 77, pp. 773-784
  • Mallik, R., Carter, B.C., Lex, S.A., King, S.J., Gross, S.P., Cytoplasmic dynein functions as a gear in response to load (2004) Nature, 427, pp. 649-652
  • Toba, S., Watanabe, T.M., Yamaguchi-Okimoto, L., Toyoshima, Y.Y., Higuchi, H., Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein (2006) Proc Natl Acad Sci U S A, 103, pp. 5741-5745
  • Kojima, H., Muto, E., Higuchi, H., Yanagida, T., Mechanics of single kinesin molecules measured by optical trapping nanometry (1997) Biophys J, 73, pp. 2012-2022
  • Higuchi, H., Muto, E., Inoue, Y., Yanagida, T., Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP (1997) Proc Natl Acad Sci U S A, 94, pp. 4395-4400
  • Carter, N.J., Cross, R.A., Mechanics of the kinesin step (2005) Nature, 435, pp. 308-312
  • Coppin, C.M., Pierce, D.W., Hsu, L., Vale, R.D., The load dependence of kinesin's mechanical cycle (1997) Proc Natl Acad Sci U S A, 94, pp. 8539-8544
  • Berliner, E., Mahtani, H.K., Karki, S., Chu, L.F., Cronan Jr., J.E., Microtubule movement by a biotinated kinesin bound to streptavidin-coated surface (1994) J Biol Chem, 269, pp. 8610-8615
  • Guydosh, N.R., Block, S.M., Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain (2006) Proc Natl Acad Sci U S A, 103, pp. 8054-8059
  • Albet-Torres, N., O'Mahony, J., Charlton, C., Balaz, M., Lisboa, P., Mode of heavy meromyosin adsorption and motor function correlated with surface hydrophobicity and charge (2007) Langmuir, 23, pp. 11147-11156
  • Schliwa, M., Woehlke, G., Molecular motors (2003) Nature, 422, pp. 759-765
  • Kashina, A.S., Semenova, I.V., Ivanov, P.A., Potekhina, E.S., Zaliapin, I., Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles (2004) Curr Biol, 14, pp. 1877-1881
  • Schroer, T.A., Dynactin (2004) Annu Rev Cell Dev Biol, 20, pp. 759-779
  • Deacon, S.W., Serpinskaya, A.S., Vaughan, P.S., Lopez Fanarraga, M., Vernos, I., Dynactin is required for bidirectional organelle transport (2003) J Cell Biol, 160, pp. 297-301
  • Valetti, C., Wetzel, D.M., Schrader, M., Hasbani, M.J., Gill, S.R., Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170 (1999) Mol Biol Cell, 10, pp. 4107-4120
  • Berezuk, M.A., Schroer, T.A., Dynactin enhances the processivity of kinesin-2 (2007) Traffic, 8, pp. 124-129
  • King, S.J., Schroer, T.A., Dynactin increases the processivity of the cytoplasmic dynein motor (2000) Nat Cell Biol, 2, pp. 20-24
  • Haghnia, M., Cavalli, V., Shah, S.B., Schimmelpfeng, K., Brusch, R., Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment (2007) Mol Biol Cell, 18, pp. 2081-2089
  • Jin, S., Haggie, P.M., Verkman, A.S., Single-particle tracking of membrane protein diffusion in a potential: simulation, detection, and application to confined diffusion of CFTR Cl- channels (2007) Biophys J, 93, pp. 1079-1088
  • Wang, Z., Khan, S., Sheetz, M.P., Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin (1995) Biophys J, 69, pp. 2011-2023
  • Berg-Sorensen, K., Flyvbjerg, H., Power spectrum analysis for optical tweezers (2004) Rev of Sci Instrum, 75, pp. 594-612
  • Wilhelm, C., Out-of-equilibrium microrheology inside living cells (2008) Phys Rev Lett, 101, p. 028101
  • Toyabe, S., Sano, M., Energy dissipation of a Brownian particle in a viscoelastic fluid (2008) Phys Rev E Stat Nonlin Soft Matter Phys, 77, p. 041403
  • Tolic-Norrelykke, I.M., Munteanu, E.L., Thon, G., Oddershede, L., Berg-Sorensen, K., Anomalous diffusion in living yeast cells (2004) Phys Rev Lett, 93, p. 078102
  • Gittes, F., Schnurr, B., Olmsted, P.D., MacKintosh, F.C., Schmidt, C.F., Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations (1997) Phys Rev Lett, 79, pp. 3286-3289
  • Caspi, A., Granek, R., Elbaum, M., Enhanced diffusion in active intracellular transport (2000) Phys Rev Lett, 85, pp. 5655-5658
  • Wong, I.Y., Gardel, M.L., Reichman, D.R., Weeks, E.R., Valentine, M.T., Anomalous diffusion probes microstructure dynamics of entangled F-actin networks (2004) Phys Rev Lett, 92, p. 178101
  • Guo, S., Hong, L., Akhremitchev, B., Simon, J.D., Surface elastic properties of human retinal pigment epithelium melanosomes (2008) Photochem Photobiol, 84, pp. 671-678
  • Kubo, R., Toda, M., Hashitsume, N., Statistical Physics II (1991), Berlin, Springer; Vinales, A.D., Desposito, M.A., Anomalous diffusion: exact solution of the generalized Langevin equation for harmonically bounded particle (2006) Phys Rev E Stat Nonlin Soft Matter Phys, 73, p. 016111
  • Desposito, M.A., Vinales, A.D., Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function (2009) Phys Rev E Stat Nonlin Soft Matter Phys, 80, p. 021111
  • Martin, D.S., Forstner, M.B., Kas, J.A., Apparent subdiffusion inherent to single particle tracking (2002) Biophys J, 83, pp. 2109-2117
  • Bruno, L., Levi, V., Brunstein, M., Desposito, M.A., Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors (2009) Phys Rev E Stat Nonlin Soft Matter Phys, 80, p. 011912
  • Echeverri, C.J., Paschal, B.M., Vaughan, K.T., Vallee, R.B., Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis (1996) J Cell Biol, 132, pp. 617-633
  • Burkhardt, J.K., Echeverri, C.J., Nilsson, T., Vallee, R.B., Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution (1997) J Cell Biol, 139, pp. 469-484
  • Melkonian, K.A., Maier, K.C., Godfrey, J.E., Rodgers, M., Schroer, T.A., Mechanism of dynamitin-mediated disruption of dynactin (2007) J Biol Chem, 282, pp. 19355-19364
  • Raupach, C., Paranhos Zitterbart, D., Mierke, C., Metzner, C., Muller, F.A., Stress fluctuations and motion of cytoskeletal-bound markers (2007) Phys Rev E, 76, p. 011918
  • Gross, S.P., Vershinin, M., Shubeita, G.T., Cargo transport: two motors are sometimes better than one (2007) Curr Biol, 17, pp. R478-R486
  • Bieling, P., Telley, I.A., Piehler, J., Surrey, T., Processive kinesins require loose mechanical coupling for efficient collective motility (2008) EMBO Rep, 9, pp. 1121-1127
  • Rogers, S.L., Tint, I.S., Fanapour, P.C., Gelfand, V.I., Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro (1997) Proc Natl Acad Sci U S A, 94, pp. 3720-3725
  • Gross, S.P., Tuma, M.C., Deacon, S.W., Serpinskaya, A.S., Reilein, A.R., Interactions and regulation of molecular motors in Xenopus melanophores (2002) J Cell Biol, 156, pp. 855-865
  • Olesen, O.F., Kawabata-Fukui, H., Yoshizato, K., Noro, N., Molecular cloning of XTP, a tau-like microtubule-associated protein from Xenopus laevis tadpoles (2002) Gene, 283, pp. 299-309
  • Scott, D.W., On optimal and data-based histograms (1979) Biometrika, 3, pp. 605-610

Citas:

---------- APA ----------
Bruno, L., Salierno, M., Wetzler, D.E., Despósito, M.A. & Levi, V. (2011) . Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells. PLoS ONE, 6(4).
http://dx.doi.org/10.1371/journal.pone.0018332
---------- CHICAGO ----------
Bruno, L., Salierno, M., Wetzler, D.E., Despósito, M.A., Levi, V. "Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells" . PLoS ONE 6, no. 4 (2011).
http://dx.doi.org/10.1371/journal.pone.0018332
---------- MLA ----------
Bruno, L., Salierno, M., Wetzler, D.E., Despósito, M.A., Levi, V. "Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells" . PLoS ONE, vol. 6, no. 4, 2011.
http://dx.doi.org/10.1371/journal.pone.0018332
---------- VANCOUVER ----------
Bruno, L., Salierno, M., Wetzler, D.E., Despósito, M.A., Levi, V. Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells. PLoS ONE. 2011;6(4).
http://dx.doi.org/10.1371/journal.pone.0018332