Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background: The glucocorticoid receptor (GR) is a transcription factor that regulates gene expression in a ligand-dependent fashion. This modular protein is one of the major pharmacological targets due to its involvement in both cause and treatment of many human diseases. Intense efforts have been made to get information about the molecular basis of GR activity. Methodology/Principal Findings: Here, the behavior of four GR-ligand complexes with different glucocorticoid and antiglucocorticoid properties were evaluated. The ability of GR-ligand complexes to oligomerize in vivo was analyzed by performing the novel Number and Brightness assay. Results showed that most of GR molecules form homodimers inside the nucleus upon ligand binding. Additionally, in vitro GR-DNA binding analyses suggest that ligand structure modulates GRDNA interaction dynamics rather than the receptor's ability to bind DNA. On the other hand, by coimmunoprecipitation studies we evaluated the in vivo interaction between the transcriptional intermediary factor 2 (TIF2) coactivator and different GR-ligand complexes. No correlation was found between GR intranuclear distribution, cofactor recruitment and the homodimerization process. Finally, Molecular determinants that support the observed experimental GR LBD-ligand/TIF2 interaction were found by Molecular Dynamics simulation. Conclusions/Significance: The data presented here sustain the idea that in vivo GR homodimerization inside the nucleus can be achieved in a DNA-independent fashion, without ruling out a dependent pathway as well. Moreover, since at least one GR-ligand complex is able to induce homodimer formation while preventing TIF2 coactivator interaction, results suggest that these two events might be independent from each other. Finally, 21-hydroxy-6,19-epoxyprogesterone arises as a selective glucocorticoid with potential pharmacological interest. Taking into account that GR homodimerization and cofactor recruitment are considered essential steps in the receptor activation pathway, results presented here contribute to understand how specific ligands influence GR behavior. © 2010 Presman et al.

Registro:

Documento: Artículo
Título:Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids
Autor:Presman, D.M.; Alvarez, L.D.; Levi, V.; Eduardo, S.; Digman, M.A.; Martí, M.A.; Veleiro, A.S.; Burton, G.; Pecci, A.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Química Orgánica/UMYMFOR-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering and Developmental Biology Center Optical Biology Core Facility, University of California Irvine, Irvine, CA, United States
INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:21 hemisuccinate 6,19 epoxyprogesterone; 21 hydroxy 6,19 epoxyprogesterone; dexamethasone; glucocorticoid receptor; glucocorticoid receptor antagonist; mifepristone; nuclear receptor coactivator 2; unclassified drug; DNA; glucocorticoid receptor; steroid; article; binding affinity; cell assay; cell culture; cell strain BHK; cell strain COS7; cell strain L 929; cell type; computer model; conformational transition; controlled study; dissociation; DNA drug complex; drug mechanism; drug receptor binding; genetic transfection; in vitro study; in vivo study; incubation time; ligand binding; modulation; molecular dynamics; oligomerization; protein DNA binding; protein DNA interaction; protein function; steroid binding; structure activity relation; animal; cell line; cell strain COS1; Cercopithecus; chemical structure; dimerization; gel mobility shift assay; immunoprecipitation; metabolism; protein binding; Animals; Cell Line; Cercopithecus aethiops; COS Cells; Dimerization; DNA; Electrophoretic Mobility Shift Assay; Immunoprecipitation; Models, Molecular; Molecular Dynamics Simulation; Protein Binding; Receptors, Glucocorticoid; Steroids
Año:2010
Volumen:5
Número:10
DOI: http://dx.doi.org/10.1371/journal.pone.0013279
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:dexamethasone, 50-02-2; mifepristone, 84371-65-3; DNA, 9007-49-2; DNA, 9007-49-2; Receptors, Glucocorticoid; Steroids
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v5_n10_p_Presman.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v5_n10_p_Presman

Referencias:

  • Gross, K.L., Cidlowski, J.A., Tissue-specific glucocorticoid action: A family affair (2008) Trends Endocrinol Metab, 19, pp. 331-339
  • van der Laan, S., Meijer, O.C., Pharmacology of glucocorticoids: Beyond receptors (2008) Eur J Pharmacol, 585, pp. 483-491
  • McMaster, A., Ray, D.W., Modelling the glucocorticoid receptor and producing therapeutic agents with anti-inflammatory effects but reduced sideeffects (2007) Exp Physiol, 92, pp. 299-309
  • Kleiman, A., Tuckermann, J.P., Glucocorticoid receptor action in beneficial and side effects of steroid therapy: Lessons from conditional knockout mice (2007) Mol Cell Endocrinol, 275, pp. 98-108
  • Necela, B.M., Cidlowski, J.A., Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells (2004) Proc Am Thorac Soc, 1, pp. 239-246
  • Chen, T., Nuclear receptor drug discovery (2008) Curr Opin Chem Biol, 12, pp. 418-426
  • Olivier Kassel, P.H., Crosstalk between the glucocorticoid receptor and other transcription factors: Molecular aspects (2007) Molecular and Cellular Endocrinology, 275, pp. 13-
  • Newton, R., Holden, N.S., Separating transrepression and transactivation: A distressing divorce for the glucocorticoid receptor? (2007) Mol Pharmacol, 72, pp. 799-809
  • Clark, A.R., Anti-inflammatory functions of glucocorticoid-induced genes (2007) Mol Cell Endocrinol, 275, pp. 79-97
  • Kumar, R., Thompson, E.B., Gene regulation by the glucocorticoid receptor: Structure: Function relationship (2005) J Steroid Biochem Mol Biol, 94, pp. 383-394
  • Gronemeyer, H., Gustafsson, J.A., Laudet, V., Principles for modulation of the nuclear receptor superfamily (2004) Nat Rev Drug Discov, 3, pp. 950-964
  • Bledsoe, R.K., Montana, V.G., Stanley, T.B., Delves, C.J., Apolito, C.J., Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition (2002) Cell, 110, pp. 93-105
  • Kauppi, B., Jakob, C., Farnegardh, M., Yang, J., Ahola, H., The threedimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism (2003) J Biol Chem, 278, pp. 22748-22754
  • Madauss, K.P., Bledsoe, R.K., McLay, I., Stewart, E.L., Uings, I.J., The first X-ray crystal structure of the glucocorticoid receptor bound to a non-steroidal agonist (2008) Bioorg Med Chem Lett, 18, pp. 6097-6099
  • Suino-Powell, K., Xu, Y., Zhang, C., Tao, Y.G., Tolbert, W.D., Doubling the size of the glucocorticoid receptor ligand binding pocket by deacylcortivazol (2008) Mol Cell Biol, 28, pp. 1915-1923
  • Biggadike, K., Bledsoe, R.K., Hassell, A.M., Kirk, B.E., McLay, I.M., X-ray crystal structure of the novel enhanced-affinity glucocorticoid agonist fluticasone furoate in the glucocorticoid receptor-ligand binding domain (2008) J Med Chem, 51, pp. 3349-3352
  • Veleiro, A.S., Alvarez, L.D., Eduardo, S.L., Burton, G., Structure of the glucocorticoid receptor, a flexible protein that can adapt to different ligands (2010) Chem Med Chem, 5, pp. 649-659
  • Stahn, C., Lowenberg, M., Hommes, D.W., Buttgereit, F., Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists (2007) Mol Cell Endocrinol, 275, pp. 71-78
  • Frego, L., Davidson, W., Conformational changes of the glucocorticoid receptor ligand binding domain induced by ligand and cofactor binding, and the location of cofactor binding sites determined by hydrogen/deuterium exchange mass spectrometry (2006) Protein Sci, 15, pp. 722-730
  • Schulz, M., Eggert, M., Baniahmad, A., Dostert, A., Heinzel, T., RU486- induced glucocorticoid receptor agonism is controlled by the receptor N terminus and by corepressor binding (2002) J Biol Chem, 277, pp. 26238-26243
  • Wang, Q., Blackford Jr., J.A., Song, L.N., Huang, Y., Cho, S., Equilibrium interactions of corepressors and coactivators with agonist and antagonist complexes of glucocorticoid receptors (2004) Mol Endocrinol, 18, pp. 1376-1395
  • He, Y., Szapary, D., Simons Jr., S.S., Modulation of induction properties of glucocorticoid receptor-agonist and -antagonist complexes by coactivators involves binding to receptors but is independent of ability of coactivators to augment transactivation (2002) J Biol Chem, 277, pp. 49256-49266
  • Schoch, G.A., D'Arcy, B., Stihle, M., Burger, D., Bar, D., Molecular switch in the glucocorticoid receptor: Active and passive antagonist conformations J Mol Biol, 395, pp. 568-577
  • Raaijmakers, H.C., Versteegh, J.E., Uitdehaag, J.C., The X-ray structure of RU486 bound to the progesterone receptor in a destabilized agonistic conformation (2009) J Biol Chem, 284, pp. 19572-19579
  • Wrange, O., Eriksson, P., Perlmann, T., The purified activated glucocorticoid receptor is a homodimer (1989) J Biol Chem, 264, pp. 5253-5259
  • Chalepakis, G., Schauer, M., Cao, X.A., Beato, M., Efficient binding of glucocorticoid receptor to its responsive element requires a dimer and DNA flanking sequences (1990) DNA Cell Biol, 9, pp. 355-368
  • Cairns, W., Cairns, C., Pongratz, I., Poellinger, L., Okret, S., Assembly of a glucocorticoid receptor complex prior to DNA binding enhances its specific interaction with a glucocorticoid response element (1991) J Biol Chem, 266, pp. 11221-11226
  • Drouin, J., Sun, Y.L., Tremblay, S., Lavender, P., Schmidt, T.J., Homodimer formation is rate-limiting for high affinity DNA binding by glucocorticoid receptor (1992) Mol Endocrinol, 6, pp. 1299-1309
  • Segard-Maurel, I., Rajkowski, K., Jibard, N., Schweizer-Groyer, G., Baulieu, E.E., Glucocorticosteroid receptor dimerization investigated by analysis of receptor binding to glucocorticosteroid responsive elements using a monomerdimer equilibrium model (1996) Biochemistry, 35, pp. 1634-1642
  • Liu, W., Wang, J., Yu, G., Pearce, D., Steroid receptor transcriptional synergy is potentiated by disruption of the DNA-binding domain dimer interface (1996) Mol Endocrinol, 10, pp. 1399-1406
  • Tsai, S.Y., Carlstedt-Duke, J., Weigel, N.L., Dahlman, K., Gustafsson, J.A., Molecular interactions of steroid hormone receptor with its enhancer element: Evidence for receptor dimer formation (1988) Cell, 55, pp. 361-369
  • Dahlman-Wright, K., Siltala-Roos, H., Carlstedt-Duke, J., Gustafsson, J.A., Protein-protein interactions facilitate DNA binding by the glucocorticoid receptor DNA-binding domain (1990) J Biol Chem, 265, pp. 14030-14035
  • Dahlman-Wright, K., Wright, A., Gustafsson, J.A., Carlstedt-Duke, J., Interaction of the glucocorticoid receptor DNA-binding domain with DNA as a dimer is mediated by a short segment of five amino acids (1991) J Biol Chem, 266, pp. 3107-3112
  • Heck, S., Kullmann, M., Gast, A., Ponta, H., Rahmsdorf, H.J., A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1 (1994) EMBO J, 13, pp. 4087-4095
  • Reichardt, H.M., Kaestner, K.H., Tuckermann, J., Kretz, O., Wessely, O., DNA binding of the glucocorticoid receptor is not essential for survival (1998) Cell, 93, pp. 531-541
  • Savory, J.G., Prefontaine, G.G., Lamprecht, C., Liao, M., Walther, R.F., Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces (2001) Mol Cell Biol, 21, pp. 781-793
  • Adams, M., Meijer, O.C., Wang, J., Bhargava, A., Pearce, D., Homodimerization of the glucocorticoid receptor is not essential for response element binding: Activation of the phenylethanolamine N-methyltransferase gene by dimerizationdefective mutants (2003) Mol Endocrinol, 17, pp. 2583-2592
  • Mikuni, S., Tamura, M., Kinjo, M., Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy (2007) FEBS Lett, 581, pp. 389-393
  • Dewint, P., Gossye, V., De Bosscher, K., Vanden Berghe, W., Van Beneden, K., A plant-derived ligand favoring monomeric glucocorticoid receptor conformation with impaired transactivation potential attenuates collageninduced arthritis (2008) J Immunol, 180, pp. 2608-2615
  • Roberson, S., Allie-Reid, F., Vanden Berghe, W., Visser, K., Binder, A., Abrogation of glucocorticoid receptor dimerization correlates with dissociated glucocorticoid behavior of compound A (2009) J Biol Chem
  • Nagaich, A.K., Rayasam, G.V., Martinez, E.D., Becker, M., Qiu, Y., Subnuclear trafficking and gene targeting by steroid receptors (2004) Ann N Y Acad Sci, 1024, pp. 213-220
  • Hager, G.L., Elbi, C., Johnson, T.A., Voss, T., Nagaich, A.K., Chromatin dynamics and the evolution of alternate promoter states (2006) Chromosome Res, 14, pp. 107-116
  • Ogawa, H., Yu, R.T., Haraguchi, T., Hiraoka, Y., Nakatani, Y., Nuclear structure-associated TIF2 recruits glucocorticoid receptor and its target DNA (2004) Biochem Biophys Res Commun, 320, pp. 218-225
  • Voss, T.C., John, S., Hager, G.L., Single-cell analysis of glucocorticoid receptor action reveals that stochastic post-chromatin association mechanisms regulate ligand-specific transcription (2006) Mol Endocrinol, 20, pp. 2641-2655
  • Vicent, G.P., Monteserin, M.C., Veleiro, A.S., Burton, G., Lantos, C.P., 21- Hydroxy-6,19-oxidoprogesterone: A novel synthetic steroid with specific antiglucocorticoid properties in the rat (1997) Mol Pharmacol, 52, pp. 749-753
  • Veleiro, A.S., Nevado, M.V., Monteserin, M.C., Burton, G., Syntheses of 21- hydroxy-11,19-oxidopregn-4-ene-3, 20-dione and 21-hydroxy- 6,19-oxidopregn- 4-ene-3, 20-dione (1995) Steroids, 60, pp. 268-271
  • Alvarez, L.D., Marti, M.A., Veleiro, A.S., Presman, D.M., Estrin, D.A., Exploring the molecular basis of action of the passive antiglucocorticoid 21- hydroxy-6,19-epoxyprogesterone (2008) J Med Chem, 51, pp. 1352-1360
  • Alvarez, L.D., Marti, M.A., Veleiro, A.S., Misico, R.I., Estrin, D.A., Hemisuccinate of 21-hydroxy-6,19-epoxyprogesterone: A tissue-specific modulator of the glucocorticoid receptor (2008) ChemMedChem, 3, pp. 1869-1877
  • Galigniana, M.D., Scruggs, J.L., Herrington, J., Welsh, M.J., Carter-Su, C., Heat shock protein 90-dependent (geldanamycin-inhibited) movement of the glucocorticoid receptor through the cytoplasm to the nucleus requires intact cytoskeleton (1998) Mol Endocrinol, 12, pp. 1903-1913
  • Schaaf, M.J., Lewis-Tuffin, L.J., Cidlowski, J.A., Ligand-selective targeting of the glucocorticoid receptor to nuclear subdomains is associated with decreased receptor mobility (2005) Mol Endocrinol, 19, pp. 1501-1515
  • Htun, H., Holth, L.T., Walker, D., Davie, J.R., Hager, G.L., Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor (1999) Mol Biol Cell, 10, pp. 471-486
  • Veleiro, A.S., Pecci, A., Monteserin, M.C., Baggio, R., Garland, M.T., 6,19- Sulfur-bridged progesterone analogues with antiimmunosuppressive activity (2005) J Med Chem, 48, pp. 5675-5683
  • Digman, M.A., Dalal, R., Horwitz, A.F., Gratton, E., Mapping the number of molecules and brightness in the laser scanning microscope (2008) Biophys J, 94, pp. 2320-2332
  • Digman, M.A., Wiseman, P.W., Choi, C., Horwitz, A.R., Gratton, E., Stoichiometry of molecular complexes at adhesions in living cells (2009) Proc Natl Acad Sci U S A, 106, pp. 2170-2175
  • Walker, D., Htun, H., Hager, G.L., Using inducible vectors to study intracellular trafficking of GFP-tagged steroid/nuclear receptors in living cells (1999) Methods, 19, pp. 386-393
  • Rusconi, S., Yamamoto, K.R., Functional dissection of the hormone and DNA binding activities of the glucocorticoid receptor (1987) EMBO J, 6, pp. 1309-1315
  • Aumais, J.P., Lee, H.S., DeGannes, C., Horsford, J., White, J.H., Function of directly repeated half-sites as response elements for steroid hormone receptors (1996) J Biol Chem, 271, pp. 12568-12577
  • Guido, E.C., Delorme, E.O., Clemm, D.L., Stein, R.B., Rosen, J., Determinants of promoter-specific activity by glucocorticoid receptor (1996) Mol Endocrinol, 10, pp. 1178-1190
  • Groyer, A., Schweizer-Groyer, G., Cadepond, F., Mariller, M., Baulieu, E.E., Antiglucocorticosteroid effects suggest why steroid hormone is required for receptors to bind DNA in vivo but not in vitro (1987) Nature, 328, pp. 624-626
  • Pandit, S., Geissler, W., Harris, G., Sitlani, A., Allosteric effects of dexamethasone and RU486 on glucocorticoid receptor-DNA interactions (2002) J Biol Chem, 277, pp. 1538-1543
  • Willmann, T., Beato, M., Steroid-free glucocorticoid receptor binds specifically to mouse mammary tumour virus DNA (1986) Nature, 324, pp. 688-691
  • Lai, J.S., Herr, W., Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations (1992) Proc Natl Acad Sci U S A, 89, pp. 6958-6962
  • van Steensel, B., Brink, M., van der Meulen, K., van Binnendijk, E.P., Wansink, D.G., Localization of the glucocorticoid receptor in discrete clusters in the cell nucleus (1995) J Cell Sci, 108 (PART 9), pp. 3003-3011
  • Htun, H., Barsony, J., Renyi, I., Gould, D.L., Hager, G.L., Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera (1996) Proc Natl Acad Sci U S A, 93, pp. 4845-4850
  • Chen, Y., Wei, L.N., Muller, J.D., Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy (2003) Proc Natl Acad Sci U S A, 100, pp. 15492-15497
  • Kim, B., Little, J.W., Dimerization of a specific DNA-binding protein on the DNA (1992) Science, 255, pp. 203-206
  • Kohler, J.J., Metallo, S.J., Schneider, T.L., Schepartz, A., DNA specificity enhanced by sequential binding of protein monomers (1999) Proc Natl Acad Sci U S A, 96, pp. 11735-11739
  • Eriksson, P., Wrange, O., Protein-protein contacts in the glucocorticoid receptor homodimer influence its DNA binding properties (1990) J Biol Chem, 265, pp. 3535-3542
  • Kassel, O., Herrlich, P., Crosstalk between the glucocorticoid receptor and other transcription factors: Molecular aspects (2007) Mol Cell Endocrinol, 275, pp. 13-29
  • Bhandare, R., Damera, G., Banerjee, A., Flammer, J.R., Keslacy, S., Glucocorticoid receptor interacting protein-1 restores glucocorticoid responsiveness in steroid-resistant airway structural cells Am J Respir Cell Mol Biol, 42, pp. 9-15
  • Li, X., Wong, J., Tsai, S.Y., Tsai, M.J., O'Malley, B.W., Progesterone and glucocorticoid receptors recruit distinct coactivator complexes and promote distinct patterns of local chromatin modification (2003) Mol Cell Biol, 23, pp. 3763-3773
  • Smith, C.L., O'Malley, B.W., Coregulator function: A key to understanding tissue specificity of selective receptor modulators (2004) Endocr Rev, 25, pp. 45-71
  • Burton, G., Lantos, C., Veleiro, A., (2006) Method for the preparation of 21- hydroxy-6,19-oxidoprogesterone (21OH-6,19OP), , U.S. Patent ed. 7,071,328
  • Lippman, M., Bolan, G., Huff, K., The effects of androgens and antiandrogens on hormone-responsive human breast cancer in long-term tissue culture (1976) Cancer Res, 36, pp. 4610-4618
  • Horwitz, K.B., Zava, D.T., Thilagar, A.K., Jensen, E.M., McGuire, W.L., Steroid receptor analyses of nine human breast cancer cell lines (1978) Cancer Res, 38, pp. 2434-2437
  • Nojek, I.M., Werbajh, S.E., Colo, G.P., Rubio, F.M., Franco, L.D., Different enzymatic activities recruitment by specific domains of TIF2 are involved in NFkappaB transactivation (2004) Medicina (B Aires), 64, pp. 135-138
  • Costas, M.A., Muller Igaz, L., Holsboer, F., Arzt, E., Transrepression of NFkappaB is not required for glucocorticoid-mediated protection of TNF-alphainduced apoptosis on fibroblasts (2000) Biochim Biophys Acta, 1499, pp. 122-129
  • Molinero, L.L., Fuertes, M.B., Girart, M.V., Fainboim, L., Rabinovich, G.A., NF-kappa B regulates expression of the MHC class I-related chain A gene in activated T lymphocytes (2004) J Immunol, 173, pp. 5583-5590
  • Marinissen, M.J., Chiariello, M., Tanos, T., Bernard, O., Narumiya, S., The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis (2004) Mol Cell, 14, pp. 29-41
  • Iavarone, C., Catania, A., Marinissen, M.J., Visconti, R., Acunzo, M., The platelet-derived growth factor controls c-myc expression through a JNK- and AP-1-dependent signaling pathway (2003) J Biol Chem, 278, pp. 50024-50030
  • Truss, M., Bartsch, J., Schelbert, A., Hache, R.J., Beato, M., Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo (1995) Embo J, 14, pp. 1737-1751
  • Dalal, R.B., Digman, M.A., Horwitz, A.F., Vetri, V., Gratton, E., Determination of particle number and brightness using a laser scanning confocal microscope operating in the analog mode (2008) Microsc Res Tech, 71, pp. 69-81
  • Andrews, N.C., Faller, D.V., A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells (1991) Nucleic Acids Res, 19, p. 2499
  • Godowski, P.J., Rusconi, S., Miesfeld, R., Yamamoto, K.R., (1987) Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement, 325, pp. 365-368
  • Gaussian III, R.C., Frisch, M.J., (2004) Wallingford CT, , Gaussian, Inc
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) J Mol Graph, 14, pp. 33-38+27-38
  • Guex, N., Peitsch, M.C., SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling (1997) Electrophoresis, 18, pp. 2714-2723
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham III, T.E., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput Phys Commun, 91, pp. 1-41
  • Cheatham III, T.E., Cieplak, P., Kollman, P.A., A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat (1999) Biomolecular Structure and Dynamics, 16, pp. 845-862
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J Chem Phys, 81, pp. 3684-3690
  • Lu, N.Z., Cidlowski, J.A., Translational regulatory mechanisms generate Nterminal glucocorticoid receptor isoforms with unique transcriptional target genes (2005) Mol Cell, 18, pp. 331-342

Citas:

---------- APA ----------
Presman, D.M., Alvarez, L.D., Levi, V., Eduardo, S., Digman, M.A., Martí, M.A., Veleiro, A.S.,..., Pecci, A. (2010) . Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids. PLoS ONE, 5(10).
http://dx.doi.org/10.1371/journal.pone.0013279
---------- CHICAGO ----------
Presman, D.M., Alvarez, L.D., Levi, V., Eduardo, S., Digman, M.A., Martí, M.A., et al. "Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids" . PLoS ONE 5, no. 10 (2010).
http://dx.doi.org/10.1371/journal.pone.0013279
---------- MLA ----------
Presman, D.M., Alvarez, L.D., Levi, V., Eduardo, S., Digman, M.A., Martí, M.A., et al. "Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids" . PLoS ONE, vol. 5, no. 10, 2010.
http://dx.doi.org/10.1371/journal.pone.0013279
---------- VANCOUVER ----------
Presman, D.M., Alvarez, L.D., Levi, V., Eduardo, S., Digman, M.A., Martí, M.A., et al. Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids. PLoS ONE. 2010;5(10).
http://dx.doi.org/10.1371/journal.pone.0013279