Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Concentration gradients inside cells are involved in key processes such as cell division and morphogenesis. Here we show that a model of the enzymatic step catalized by phosphofructokinase (PFK), a step which is responsible for the appearance of homogeneous oscillations in the glycolytic pathway, displays Turing patterns with an intrinsic length-scale that is smaller than a typical cell size. All the parameter values are fully consistent with classic experiments on glycolytic oscillations and equal diffusion coefficients are assumed for ATP and ADP. We identify the enzyme concentration and the glycolytic flux as the possible regulators of the pattern. To the best of our knowledge, this is the first closed example of Turing pattern formation in a model of a vital step of the cell metabolism, with a built-in mechanism for changing the diffusion length of the reactants, and with parameter values that are compatible with experiments. Turing patterns inside cells could provide a check-point that combines mechanical and biochemical information to trigger events during the cell division process. © 2007 Strier, Ponce Dawson.

Registro:

Documento: Artículo
Título:Turing patterns inside cells
Autor:Strier, D.E.; Dawson, S.P.
Filiación:Service de Chimie Physique, Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Brussels, Belgium
Departamento de Física, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Pabellón 1, Buenos Aires, Argentina
Palabras clave:6 phosphofructokinase; adenosine diphosphate; adenosine triphosphate; 6 phosphofructokinase; adenosine diphosphate; adenosine triphosphate; animal cell; article; catalysis; cell division; cell metabolism; cell size; concentration response; diffusion coefficient; enzyme kinetics; enzyme mechanism; glycolysis; mathematical computing; molecular mechanics; nonhuman; oscillation; protein protein interaction; regulatory mechanism; steady state; yeast; biological model; biophysics; chemical model; chemistry; diffusion; glycolysis; metabolism; methodology; morphogenesis; oscillometry; theoretical model; Adenosine Diphosphate; Adenosine Triphosphate; Biophysics; Catalysis; Cell Division; Diffusion; Glycolysis; Models, Biological; Models, Chemical; Models, Theoretical; Morphogenesis; Oscillometry; Phosphofructokinases
Año:2007
Volumen:2
Número:10
DOI: http://dx.doi.org/10.1371/journal.pone.0001053
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:6 phosphofructokinase, 9001-80-3; adenosine diphosphate, 20398-34-9, 58-64-0; adenosine triphosphate, 15237-44-2, 56-65-5, 987-65-5; Adenosine Diphosphate, 58-64-0; Adenosine Triphosphate, 56-65-5; Phosphofructokinases, EC 2.7.1 -
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v2_n10_p_Strier.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v2_n10_p_Strier

Referencias:

  • Lawrence, P.A., (1992) The Making of a Fly: The genetics of animal design, , Boston: Blackwell Scientific Publications
  • Xu, H.-T., Yuan, X.-B., Guan, C.-B., Duan, S., Wu, C.-P., Calcium signaling in chemorepellant Slit2-dependent regulation of neuronal migration (2004) Proc Natl Acad Sci USA, 101, pp. 4296-4301
  • Hepler, P.K., Vidali, L., Cheung, A.Y., Polarized cell growth in higher plants (2001) Annu Rev Cell Dev Biol, 17, pp. 159-187
  • Sharp, D.J., Rogers, G.C., Scholey, J.M., Microtubule motors in mitosis (2000) Nature, 407, pp. 41-47
  • Clapham, D.E., Replenishing the stores (1995) Nature, 375, pp. 634-635
  • Turing, A.M., The chemical basis of morphogenesis (1952) Phil Trans Roy Soc B, 237, pp. 37-72
  • Castets, V., Dulos, E., Boissonade, J., De Kepper, P., Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern (1990) Phys Rev Lett, 64, pp. 2953-2956
  • Ouyang, Q., Swinney, H., Transition from a uniform state to hexagonal and striped Turing patterns (1991) Nature, 352, pp. 610-612
  • Murray, J.D., (1989) Mathematical Biology, 12. , York: Springer
  • Kondo, S., Asai, R., A Reaction-Diffusion Wave on the Skin of the Marine Angelfish Pomacanthus (1995) Nature, 376, pp. 765-767
  • Meinhardt, H., (1999) On pattern and growth, pp. 129-148. , eds () On Growth and Form: Spatio-temporal Pattern Formation in Biology. London: John Wiley & Sons. pp
  • Prigogine, I., Lefever, R., Goldbeter, A., Herschkowitz-Kaufman, M., Symmetry Breaking Instabilities in Biological Systems (1969) Nature, 223, pp. 913-916
  • Selkov, E.E., On the Mechanism of Single Frequency Self-Oscillations in Glycolysis. I. A Simple Kinetic Model (1968) Eur J Biochem, 4, pp. 79-86
  • Goldbeter, A., (1997) Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, , Cambridge: Cambridge University Press
  • Selkov, E.E., (1968) Mol Biol, 2, pp. 252-266. , English Translation
  • Hasslacher, B., Kapral, R., Lawniczak, A., Molecular Turing structures in the biochemistry of the cell (1993) Chaos, 3, pp. 7-13
  • Richter, P.H., Rehmus, P., Ross, J., Control and dissipation in oscillatory chemical engines (1981) Prog Theor Phys, 66, pp. 385-405
  • Lengyel, I., Epstein, I., Modeling of Turing Structures in the Chlorite - Iodide - Malonic Acid - Starch Reaction System (1991) Science, 251, pp. 650-652
  • Strier, D.E., Ponce Dawson, S., Rescaling of diffusion coefficients in two-timescale chemical systems (2000) J Chem Phys, 112, pp. 825-834
  • Strier, D.E., Ponce Dawson, S., Role of complexing agents in the appearance of Turing patterns. Phys Rev E (2004), 69: 066207 1-10; (1974) Biological and Biochemical Oscillators, 12. , Chance B, Ghosh AK, Pye EK, Hess B, eds , York: Academic Press
  • Hess, B., Boiteaur, A., Oscillatory phenomena in biochemistry (1971) Annu Rev Biochem, 40, pp. 237-258
  • Boiteux, A., Goidbeter, A., Hess, B., Control of Oscillating Glycolysis of Yeast by Stochastic, Periodic, and Steady Source of Substrate: A Model and Experimental Study (1975) Proc Natl Acad Sci USA, 72, pp. 3829-3833
  • Dano, S., Sørensen, P.G., Hynne, F., Sustained oscillations in living cells (1999) Nature, 402, pp. 320-322
  • Bezrukov, S.M., Vodyanoy, I., Parsegiam, V.A., Counting polymers moving through a single ion channel (1994) Nature, 370, pp. 279-281
  • Pye, E.K., Chance, B., (1966) Proc Nat Acad Sci USA, 55, pp. 888-894
  • Strier, D.E., (2002), PhD thesis, Universidad de Buenos Aires; Goldbeter, A., Lefever, R., Dissipative structures for an allosteric model (1972) Biophys J, 12, pp. 1302-1315
  • Mair, T., Muller, S.C., Traveling NADH and proton waves during oscillatory glycolysis in intro (1996) J Biol Chem, 271, pp. 627-630
  • Pearson, J.E., Bruno, W., Pattern Formation in an N+Q Component Reaction-Diffusion System (1992) Chaos, 2, pp. 513-524
  • Bagyan, S., Mair, T., Dulos, E., Boissonade, J., DeKepper, P., Glycolytic oscillations and waves in an open spatial reactor: Impact of feed-back regulation of phosphofructokinase (2005) Biophys Chem, 116, pp. 67-76. , S

Citas:

---------- APA ----------
Strier, D.E. & Dawson, S.P. (2007) . Turing patterns inside cells. PLoS ONE, 2(10).
http://dx.doi.org/10.1371/journal.pone.0001053
---------- CHICAGO ----------
Strier, D.E., Dawson, S.P. "Turing patterns inside cells" . PLoS ONE 2, no. 10 (2007).
http://dx.doi.org/10.1371/journal.pone.0001053
---------- MLA ----------
Strier, D.E., Dawson, S.P. "Turing patterns inside cells" . PLoS ONE, vol. 2, no. 10, 2007.
http://dx.doi.org/10.1371/journal.pone.0001053
---------- VANCOUVER ----------
Strier, D.E., Dawson, S.P. Turing patterns inside cells. PLoS ONE. 2007;2(10).
http://dx.doi.org/10.1371/journal.pone.0001053