Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Plants in arid zones are constantly exposed to drought stress. The ASR protein family (Abscisic, Stress, Ripening) -a subgroup of the late embryogenesis abundant superfamily-is involved in the water stress response and adaptation to dry environments. Tomato ASR1, as well as other members of this family, is an intrinsically disordered protein (IDP) that functions as a transcription factor and a chaperone. Here we employed different biophysical techniques to perform a deep in vitro characterization of ASR1 as an IDP and showed how both environmental factors and in vivo targets modulate its folding. We report that ASR1 adopts different conformations such as α-helix or polyproline type II in response to environmental changes. Low temperatures and low pH promote the polyproline type II conformation (PII). While NaCl increases PII content and slightly destabilizes α-helix conformation, PEG and glycerol have an important stabilizing effect of α-helix conformation. The binding of Zn 2 + in the low micromolar range promotes α-helix folding, while extra Zn 2+ results in homo-dimerization. The ASR1-DNA binding is sequence specific and dependent on Zn 2+ . ASR1 chaperone activity does not change upon the structure induction triggered by the addition of Zn 2+ . Furthermore, trehalose, which has no effect on the ASR1 structure by itself, showed a synergistic effect on the ASR1-driven heat shock protection towards the reporter enzyme citrate synthase (CS). These observations prompted the development of a FRET reporter to sense ASR1 folding in vivo. Its performance was confirmed in Escherichia coli under saline and osmotic stress conditions, representing a promising probe to be used in plant cells. Overall, this work supports the notion that ASR1 plasticity is a key feature that facilitates its response to drought stress and its interaction with specific targets. © 2018 Wetzler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Conformational plasticity of the intrinsically disordered protein asr1 modulates its function as a drought stress-responsive gene
Autor:Wetzler, D.E.; Fuchs Wightman, F.; Bucci, H.A.; Rinaldi, J.; Caramelo, J.J.; Iusem, N.D.; Ricardi, M.M.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
Fundación Instituto Leloir, Buenos Aires, Argentina e Instituto de investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
Palabras clave:citrate synthase; DNA; glycerol; macrogol; proline; sodium chloride; transcription factor; transcription factor ASR1; trehalose; unclassified drug; zinc ion; Asr1 protein, Lycopersicon esculentum; plant protein; protein binding; zinc; alpha helix; Article; biophysics; conformational transition; dimerization; DNA binding; drought stress; environmental change; environmental factor; Escherichia coli; fluorescence resonance energy transfer; heat shock; in vitro study; in vivo study; low temperature; nonhuman; osmotic stress; pH; plant cell; plasticity; protein conformation; protein folding; protein interaction; protein structure; protein targeting; salt stress; chemistry; cold; drought; growth, development and aging; metabolism; physiological stress; protein multimerization; protein secondary structure; protein unfolding; tomato; Cold Temperature; Droughts; Glycerol; Hydrogen-Ion Concentration; Lycopersicon esculentum; Plant Proteins; Polyethylene Glycols; Protein Binding; Protein Multimerization; Protein Structure, Secondary; Protein Unfolding; Stress, Physiological; Trehalose; Zinc
Año:2018
Volumen:13
Número:8
DOI: http://dx.doi.org/10.1371/journal.pone.0202808
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:citrate synthase, 9027-96-7; DNA, 9007-49-2; glycerol, 56-81-5; macrogol, 25322-68-3; proline, 147-85-3, 7005-20-1; sodium chloride, 7647-14-5; trehalose, 99-20-7; zinc ion, 23713-49-7; zinc, 7440-66-6, 14378-32-6; Asr1 protein, Lycopersicon esculentum; Glycerol; Plant Proteins; Polyethylene Glycols; Trehalose; Zinc
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v13_n8_p_Wetzler

Referencias:

  • Berger, J., Palta, J., Vadez, V., Review: An integrated framework for crop adaptation to dry environments: Responses to transient and terminal drought (2016) Plant Sci, 253, pp. 58-67. , https://doi.org/10.1016/j.plantsci.2016.09.007, PMID: 27968997
  • Tunnacliffe, A., Wise, M.J., The continuing conundrum of the LEA proteins (2007) Naturwissenschaften, 94, pp. 791-812. , https://doi.org/10.1007/s00114-007-0254-y, PMID: 17479232
  • Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., Covarrubias, A.A., The enigmatic LEA proteins and other hydrophilins (2008) Plant Physiol, 148, pp. 6-24. , https://doi.org/10.1104/pp.108.120725, PMID: 18772351
  • Iusem, N.D., Bartholomew, D.M., Hitz, W.D., Scolnik, P.A., Tomato (Lycopersicon esculentum) Transcript lnduced by Water Deficit and Ripening (1993) Plant Physiol, pp. 1353-1354. , https://doi.org/10.1104/pp.102.4.1353, PMID: 8278555
  • Frankel, N., Carrari, F., Hasson, E., Iusem, N.D., Evolutionary history of the Asr gene family (2006) Gene, 378, pp. 74-83. , https://doi.org/10.1016/j.gene.2006.05.010, PMID: 16822623
  • González, R.M., Iusem, N.D., Twenty years of research on Asr (ABA-stress-ripening) genes and proteins (2014) Planta, 239, pp. 941-949. , https://doi.org/10.1007/s00425-014-2039-9, PMID: 24531839
  • Rom, S., Gilad, A., Kalifa, Y., Konrad, Z., Karpasas, M.M., Goldgur, Y., Mapping the DNA- And zinc-binding domains of ASR1 (abscisic acid stress ripening), an abiotic-stress regulated plant specific protein (2006) Bio-Chimie, 88, pp. 621-628. , https://doi.org/10.1016/j.biochi.2005.11.008, PMID: 16387406
  • Goldgur, Y., Rom, S., Ghirlando, R., Shkolnik, D., Shadrin, N., Konrad, Z., Desiccation and Zinc Binding Induce Transition of Tomato Abscisic Acid Stress Ripening 1, a Water Stress- And Salt Stress-Regulated Plant-Specific Protein, from Unfolded to Folded State (2006) Plant Physiol, 143, pp. 617-628. , https://doi.org/10.1104/pp.106.092965, PMID: 17189335
  • Maskin, L., Frankel, N., Gudesblat, G., Demergasso, M.J., Pietrasanta, L.I., Iusem, N.D., Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss (2007) Biochem Biophys Res Commun, 352, pp. 831-835. , https://doi.org/10.1016/j.bbrc.2006.11.115, PMID: 17157822
  • Kalifa, Y., Gilad, A., Konrad, Z., Zaccai, M., Scolnik, P.A., Bar-Zvi, D., The water- And salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein (2004) Biochem J, 381, pp. 373-378. , https://doi.org/10.1042/BJ20031800, PMID: 15101820
  • Ricardi, M.M., Guaimas, F.F., González, R.M., Burrieza, H.P., López-Fernández, M.P., Jares-Erijman, E.A., Nuclear import and dimerization of tomato ASR1, a water stress-inducible protein exclusive to plants (2012) PLoS One, 7, pp. 1-8. , https://doi.org/10.1371/journal.pone.0041008, PMID: 22899993
  • Sun, X., Rikkerink, E.H.A., Jones, W.T., Uversky, V.N., Multifarious Roles of Intrinsic Disorder in Proteins Illustrate Its Broad Impact on Plant Biology (2013) Plant Cell, 25, pp. 38-55. , https://doi.org/10.1105/tpc.112.106062, PMID: 23362206
  • Bar-Zvi, Z.K.D., (2008) Synergism between The Chaperone-Like Activity of The Stress Regulated ASR1 Protein and The Osmolyte Glycine-Betaine, pp. 1213-1219. , https://doi.org/10.1007/s00425-008-0693-5
  • Ricardi, M.M., González, R.M., Zhong, S., Domínguez, P.G., Duffy, T., Turjanski, P.G., Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor (2014) BMC Plant Biol, 14, p. 29. , https://doi.org/10.1186/1471-2229-14-29, PMID: 24423251
  • Arenhart, R.A., Bai, Y., Valter De Oliveira, L.F., Bucker Neto, L., Schunemann, M., Maraschin, F.D.S., New insights into aluminum tolerance in rice: The ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes (2014) Mol Plant, 7, pp. 709-721. , https://doi.org/10.1093/mp/sst160, PMID: 24253199
  • Chen, Y.H., Determination of the helix and β form of proteins in aqueous solution by circular dichroism (1974) Biochemistry, 13, pp. 3350-3359. , https://doi.org/10.1021/bi00713a027, PMID: 4366945
  • García-Alai, M.M., Gallo, M., Salame, M., Wetzler, D.E., McBride, A.A., Paci, M., Molecular basis for phos-phorylation-dependent, PEST-mediated protein turnover (2006) Structure, 14, pp. 309-319. , https://doi.org/10.1016/j.str.2005.11.012, PMID: 16472750
  • Wetzler, D.E., Gallo, M., Melis, R., Elisco, T., Nadra, A.D., Ferreiro, D.U., Strained DNA binding helix is conserved for site recognition, folding nucleation, and conformational modulation (2009) Biopolymers, 91, pp. 432-443. , https://doi.org/10.1002/bip.21146, PMID: 19156829
  • Hessels, A.M., Merkx, M., Simple Method for Proper Analysis of FRET Sensor Titration Data and Intracellular Imaging Experiments Based on Isosbestic Points (2016) ACS Sensors, 1, pp. 498-502. , https://doi.org/10.1021/acssensors.6b00078
  • Nelson, J.W., Kallenbach, N.R., Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol (1986) Proteins Struct Funct Bioinforma, 1, pp. 211-217. , https://doi.org/10.1002/prot.340010303, PMID: 3449856
  • Tiffany, M.L., Krimm, S., Extended conformations of polypeptides and proteins in urea and guanidine hydrochloride (1973) Biopolymers, 12, pp. 575-587. , https://doi.org/10.1002/bip.1973.360120310
  • Shi, Z.S., Olson, C.A., Rose, G.D., Baldwin, R.L., Kallenbach, N.R., Polyproline II structure in a sequence of seven alanine residues (2002) Proc Natl Acad Sci U S A, 99, pp. 9190-9195. , https://doi.org/10.1073/pnas.112193999, PMID: 12091708
  • Tiffany, M.L., Krimm, S., Effect of temperature on the circular dichroism spectra of polypeptides in the extended state (1972) Biopolymers, 11, pp. 2309-2316. , https://doi.org/10.1002/bip.1972.360111109, PMID: 4634868
  • Uversky, V.N., Intrinsically disordered proteins and their environment: Effects of strong denaturants, temperature, pH, Counter ions, membranes, binding partners, osmolytes, and macromolecular crowding (2009) Protein J, 28, pp. 305-325. , https://doi.org/10.1007/s10930-009-9201-4, PMID: 19768526
  • Tiffany, M.L., Krimm, S., New Chain Conformations of Poly(g1utamic Acid) and Polylysine (1968) Biopolymers, 6, pp. 1379-1382. , https://doi.org/10.1002/bip.1968.360060911, PMID: 5669472
  • Shen, J., Zeng, Y., Zhuang, X., Sun, L., Yao, X., Pimpl, P., Organelle pH in the arabidopsis endomem-brane system (2013) Mol Plant. © The Authors. All Rights Reserved., 6, pp. 1419-1437. , https://doi.org/10.1093/mp/sst079, PMID: 23702593
  • Hirota, N., Mizuno, K., Goto, Y., Group additive contributions to the alcohol-induced alpha-helix formation of melittin: Implication for the mechanism of the alcohol effects on proteins (1998) J Mol Biol, 275, pp. 365-378. , https://doi.org/10.1006/jmbi.1997.1468, PMID: 9466915
  • Uversky, V.N., Natively unfolded proteins: A point where biology waits for physics (2002) Eur J Biochem, 12, pp. 2-12. , https://doi.org/10.1110/ps.4210102, matic
  • Lee, G.J., Assaying Proteins for Molecular Chaperone Activity (1995) Methods Cell Biol, 50, pp. 325-334. , https://doi.org/10.1016/S0091-679X(08)61040-7, PMID: 8531805
  • Iturriaga, G., The LEA proteins and trehalose loving couple: A step forward in anhydrobiotic engineering (2008) Biochem J, 410, pp. 1-2. , https://doi.org/10.1042/BJ20071427
  • Vinkenborg, J.L., Nicolson, T.J., Bellomo, E.A., Koay, M.S., Rutter, G.A., Merkx, M., Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis (2009) Nat Methods, 6, pp. 737-740. , https://doi.org/10.1038/nmeth.1368, Nature Publishing Group; PMID: 19718032
  • Pilizota, T., Shaevitz, J.W., Plasmolysis and cell shape depend on solute outer-membrane permeability during hyperosmotic shock in E. Coli (2013) Biophys J, 104, pp. 2733-2742. , https://doi.org/10.1016/j.bpj.2013.05.011, Biophysical Society; PMID: 23790382
  • Morikawa, T.J., Fujita, H., Kitamura, A., Horio, T., Yamamoto, J., Kinjo, M., Dependence of fluorescent protein brightness on protein concentration in solution and enhancement of it (2016) Sci Rep, 6, p. 22342. , https://doi.org/10.1038/srep22342, PMID: 26956628
  • Faller, P., Hureau, C., La Penna, G., Metal ions and intrinsically disordered proteins and peptides: From Cu/ Zn amyloid-β to general principles (2014) Acc Chem Res, 47, pp. 2252-2259. , https://doi.org/10.1021/ar400293h, PMID: 24871565
  • Li, R.-H., Liu, G.-B., Wang, H., Zheng, Y.-Z., Effects of Fe3+ and Zn2+ on the structural and thermodynamic properties of a soybean ASR protein (2013) Biosci Biotechnol Biochem, 77, pp. 475-481. , https://doi.org/10.1271/bbb.120666, PMID: 23470734
  • Evers, T.H., Appelhof, M.A.M., Meijer, E.W., Merkx, M., His-tags as Zn(II) binding motifs in a protein-based fluorescent sensor (2008) Protein Eng Des Sel, 21, pp. 529-536. , https://doi.org/10.1093/protein/gzn029, PMID: 18502789
  • Liu, Z., Huang, Y., Advantages of proteins being disordered (2014) Protein Sci, 23, pp. 539-550. , https://doi.org/10.1002/pro.2443, PMID: 24532081
  • Fisher, W.W., Li, J.J., Hammonds, A.S., Brown, J.B., Pfeiffer, B.D., Weiszmann, R., DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila (2012) Proc Natl Acad Sci, 109, pp. 21330-21335. , https://doi.org/10.1073/pnas.1209589110, PMID: 23236164
  • Boersma, A.J., Zuhorn, I.S., Poolman, B., A sensor for quantification of macromolecular crowding in living cells (2015) Nat Methods, 12, pp. 227-229. , https://doi.org/10.1038/nmeth.3257, PMID: 25643150
  • Sukenik, S., Ren, P., Gruebele, M., Weak protein–protein interactions in live cells are quantified by cell-volume modulation (2017) Proc Natl Acad Sci, m, p. 201700818. , https://doi.org/10.1073/pnas.1700818114, PMID: 28607089
  • Carver, J.A., Grosas, A.B., Ecroyd, H., Quinlan, R.A., The functional roles of the unstructured N- And C-terminal regions in αB-crystallin and other mammalian small heat-shock proteins (2017) Cell Stress Chaperones, 22, pp. 627-638. , https://doi.org/10.1007/s12192-017-0789-6, PMID: 28391594

Citas:

---------- APA ----------
Wetzler, D.E., Fuchs Wightman, F., Bucci, H.A., Rinaldi, J., Caramelo, J.J., Iusem, N.D. & Ricardi, M.M. (2018) . Conformational plasticity of the intrinsically disordered protein asr1 modulates its function as a drought stress-responsive gene. PLoS ONE, 13(8).
http://dx.doi.org/10.1371/journal.pone.0202808
---------- CHICAGO ----------
Wetzler, D.E., Fuchs Wightman, F., Bucci, H.A., Rinaldi, J., Caramelo, J.J., Iusem, N.D., et al. "Conformational plasticity of the intrinsically disordered protein asr1 modulates its function as a drought stress-responsive gene" . PLoS ONE 13, no. 8 (2018).
http://dx.doi.org/10.1371/journal.pone.0202808
---------- MLA ----------
Wetzler, D.E., Fuchs Wightman, F., Bucci, H.A., Rinaldi, J., Caramelo, J.J., Iusem, N.D., et al. "Conformational plasticity of the intrinsically disordered protein asr1 modulates its function as a drought stress-responsive gene" . PLoS ONE, vol. 13, no. 8, 2018.
http://dx.doi.org/10.1371/journal.pone.0202808
---------- VANCOUVER ----------
Wetzler, D.E., Fuchs Wightman, F., Bucci, H.A., Rinaldi, J., Caramelo, J.J., Iusem, N.D., et al. Conformational plasticity of the intrinsically disordered protein asr1 modulates its function as a drought stress-responsive gene. PLoS ONE. 2018;13(8).
http://dx.doi.org/10.1371/journal.pone.0202808