Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Probabilistic proposals of Language of Thoughts (LoTs) can explain learning across different domains as statistical inference over a compositionally structured hypothesis space. While frameworks may differ on how a LoT may be implemented computationally, they all share the property that they are built from a set of atomic symbols and rules by which these symbols can be combined. In this work we propose an extra validation step for the set of atomic productions defined by the experimenter. It starts by expanding the defined LoT grammar for the cognitive domain with a broader set of arbitrary productions and then uses Bayesian inference to prune the productions from the experimental data. The result allows the researcher to validate that the resulting grammar still matches the intuitive grammar chosen for the domain. We then test this method in the language of geometry, a specific LoT model for geometrical sequence learning. Finally, despite the fact of the geometrical LoT not being a universal (i.e. Turing-complete) language, we show an empirical relation between a sequence’s probability and its complexity consistent with the theoretical relationship for universal languages described by Levin’s Coding Theorem. © 2018 Romano et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Bayesian validation of grammar productions for the language of thought
Autor:Romano, S.; Salles, A.; Amalric, M.; Dehaene, S.; Sigman, M.; Figueira, S.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Computación, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Investigación en Ciencias de la Computación (ICC), Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Cálculo (IC), Buenos Aires, Argentina
Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, Gif/Yvette, 91191, France
CONICET-Universidad Torcuato Di Tella., Laboratorio de Neurociencia, Buenos Aires, C1428BIJ, Argentina
Palabras clave:article; geometry; grammar; human; human experiment; language; probability; scientist; sequence learning; theoretical study; thinking; validation process; Bayes theorem; cognition; linguistics; probability learning; theoretical model; Bayes Theorem; Cognition; Humans; Linguistics; Models, Theoretical; Probability Learning; Thinking
Año:2018
Volumen:13
Número:7
DOI: http://dx.doi.org/10.1371/journal.pone.0200420
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v13_n7_p_Romano

Referencias:

  • Borges, J.L., (1944) Ficciones, 1935-1944, , Buenos Aires: Sur
  • Rosch, E., Principles of categorization (1999) Concepts: Core Readings, 189
  • Nosofsky, R.M., Attention, similarity, and the identification–categorization relationship (1986) Journal of Experimental Psychology: General, 115 (1), p. 39. , https://doi.org/10.1037/0096-3445.115.1.39
  • Rosch, E., Simpson, C., Miller, R.S., Structural bases of typicality effects (1976) Journal of Experimental Psychology: Human Perception and Performance, 2 (4), p. 491
  • Rosch, E., Mervis, C.B., Family resemblances: Studies in the internal structure of categories (1975) Cognitive Psychology, 7 (4), pp. 573-605. , https://doi.org/10.1016/0010-0285(75)90024-9
  • Boole, G., (1854) An Investigation of The Laws of Thought: on Which Are Founded The Mathematical Theories of Logic and Probabilities, , Dover Publications
  • Fodor, J.A., (1975) The Language of Thought. Language and Thought Series., , Harvard University Press
  • Gentner, D., Structure-mapping: A theoretical framework for analogy (1983) Cognitive Science, 7 (2), pp. 155-170. , https://doi.org/10.1207/s15516709cog0702_3
  • Blackburn, S., (1984) Spreading The Word: Grounding in The Philosophy of Language
  • Loewer, B., Rey, G., Meaning in mind (1991) Fodor and His Critics
  • Knowles, J., The language of thought and natural language understanding (1998) Analysis, 58 (4), pp. 264-272. , https://doi.org/10.1093/analys/58.4.264
  • Aydede, M., Language of thought: The connectionist contribution (1997) Minds and Machines, 7 (1), pp. 57-101. , https://doi.org/10.1023/A:1008203301671
  • Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D., How to grow a mind: Statistics, structure, and abstraction (2011) Science, 331 (6022), pp. 1279-1285. , https://doi.org/10.1126/science.1192788, PMID: 21393536
  • Piantadosi, S.T., Jacobs, R.A., Four problems solved by the probabilistic Language of Thought (2016) Current Directions in Psychological Science, 25 (1), pp. 54-59. , https://doi.org/10.1177/0963721415609581
  • Piantadosi, S.T., Tenenbaum, J.B., Goodman, N.D., Bootstrapping in a language of thought: A formal model of numerical concept learning (2012) Cognition, 123 (2), pp. 199-217. , https://doi.org/10.1016/j.cognition.2011.11.005, PMID: 22284806
  • Amalric, M., Wang, L., Pica, P., Figueira, S., Sigman, M., Dehaene, S., The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers (2017) PLOS Computational Biology, 13 (1). , https://doi.org/10.1371/journal.pcbi.1005273, PMID: 28125595
  • Yildirim, I., Jacobs, R.A., Learning multisensory representations for auditory-visual transfer of sequence category knowledge: A probabilistic language of thought approach (2015) Psychonomic Bulletin & Review, 22 (3), pp. 673-686. , https://doi.org/10.3758/s13423-014-0734-y
  • Romano, S., Sigman, M., Figueira, S., A language of thought with Turing-computable Kolmogorov complexity (2013) Papers in Physics, 5, p. 050001. , https://doi.org/10.4279/pip.050001
  • Ellis, K., Solar-Lezama, A., Tenenbaum, J., Unsupervised learning by program synthesis (2015) Advances in Neural Information Processing Systems, pp. 973-981
  • Ullman, T.D., Goodman, N.D., Tenenbaum, J.B., Theory learning as stochastic search in the language of thought (2012) Cognitive Development, 27 (4), pp. 455-480. , https://doi.org/10.1016/j.cogdev.2012.07.005
  • Goldsmith, J., Probabilistic models of grammar: Phonology as information minimization (2002) Phonological Studies, 5, pp. 21-46
  • Goldsmith, J., Unsupervised learning of the morphology of a natural language (2001) Computational Linguistics, 27 (2), pp. 153-198. , https://doi.org/10.1162/089120101750300490
  • Piantadosi, S.T., Tenenbaum, J.B., Goodman, N.D., (2016) The Logical Primitives of Thought: Empirical Foundations for Compositional Cognitive Models
  • Levin, L.A., Laws of information conservation (nongrowth) and aspects of the foundation of probability theory (1974) Problemy Peredachi Informatsii, 10 (3), pp. 30-35
  • Goodman, N.D., Tenenbaum, J.B., Feldman, J., Griffiths, T.L., A rational analysis of rule-based concept learning (2008) Cognitive Science, 32 (1), pp. 108-154. , https://doi.org/10.1080/03640210701802071, 21635333
  • Manning, C.D., Schütze, H., (1999) Foundations of Statistical Natural Language Processing, , MIT Press
  • Overlan, M.C., Jacobs, R.A., Piantadosi, S.T., Learning abstract visual concepts via probabilistic program induction in a Language of Thought (2017) Cognition, 168, pp. 320-334. , https://doi.org/10.1016/j.cognition.2017.07.005, PMID: 28772189
  • Geman, S., Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. Pattern Analysis and Machine Intelligence (1984) IEEE Transactions on, 6, pp. 721-741. , https://doi.org/10.1109/TPAMI.1984.4767596
  • Johnson, M., Griffiths, T.L., Goldwater, S., Bayesian inference for PCFGS via markov chain monte carlo (2007) HLT-NAACL, pp. 139-146
  • Izard, V., Pica, P., Dehaene, S., Hinchey, D., Spelke, E., Geometry as a universal mental construction (2011) Space, Time and Number in The Brain, 19, pp. 319-332. , https://doi.org/10.1016/B978-0-12-3859488.00019-0
  • Dehaene, S., Izard, V., Pica, P., Spelke, E., Core knowledge of geometry in an amazonian indigene group (2006) Science, 311 (5759), pp. 381-384. , https://doi.org/10.1126/science.1121739, PMID: 16424341
  • Dillon, M.R., Huang, Y., Spelke, E.S., Core foundations of abstract geometry (2013) Proceedings of The National Academy of Sciences, 110 (35), pp. 14191-14195. , https://doi.org/10.1073/pnas.1312640110
  • Landau, B., Gleitman, H., Spelke, E., Spatial knowledge and geometric representation in a child blind from birth (1981) Science, 213 (4513), pp. 1275-1278. , https://doi.org/10.1126/science.7268438, PMID: 7268438
  • Lee, S.A., Sovrano, V.A., Spelke, E.S., Navigation as a source of geometric knowledge: Young children’s use of length, angle, distance, and direction in a reorientation task (2012) Cognition, 123 (1), pp. 144-161. , https://doi.org/10.1016/j.cognition.2011.12.015, PMID: 22257573
  • Westphal-Fitch, G., Huber, L., Gómez, J.C., Fitch, W.T., Production and perception rules underlying visual patterns: Effects of symmetry and hierarchy (2012) Philosophical Transactions of The Royal Society of London B: Biological Sciences, 367 (1598), pp. 2007-2022. , https://doi.org/10.1098/rstb.2012.0098, PMID: 22688636
  • Machilsen, B., Pauwels, M., Wagemans, J., The role of vertical mirror symmetry in visual shape detection (2009) Journal of Vision, 9 (12), p. 11. , https://doi.org/10.1167/9.12.11, PMID: 20053102
  • Calude, C.S., Dinneen, M.J., Shu, C.K., Computing a glimpse of randomness (2002) Experimental Mathematics, 11 (3), pp. 361-370. , https://doi.org/10.1080/10586458.2002.10504481
  • Shannon, C., A mathematical theory of communication (1948) Bell System Technical Journal, 27, pp. 379-423. , https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, 623–656
  • Kolmogorov, A.N., Three approaches to the quantitative definition of information* (1968) International Journal of Computer Mathematics, 2 (1-4), pp. 157-168. , https://doi.org/10.1080/00207166808803030
  • Solomonoff, R.J., A formal theory of inductive inference. Part I (1964) Information and Control, 7 (1), pp. 1-22. , https://doi.org/10.1016/S0019-9958(64)90223-2
  • Li, M., Vitányi, P., (2013) An Introduction to Kolmogorov Complexity and Its Applications, , Springer Science & Business Media
  • MacKay, D.J., (2003) Information Theory, Inference and Learning Algorithms, , Cambridge university press

Citas:

---------- APA ----------
Romano, S., Salles, A., Amalric, M., Dehaene, S., Sigman, M. & Figueira, S. (2018) . Bayesian validation of grammar productions for the language of thought. PLoS ONE, 13(7).
http://dx.doi.org/10.1371/journal.pone.0200420
---------- CHICAGO ----------
Romano, S., Salles, A., Amalric, M., Dehaene, S., Sigman, M., Figueira, S. "Bayesian validation of grammar productions for the language of thought" . PLoS ONE 13, no. 7 (2018).
http://dx.doi.org/10.1371/journal.pone.0200420
---------- MLA ----------
Romano, S., Salles, A., Amalric, M., Dehaene, S., Sigman, M., Figueira, S. "Bayesian validation of grammar productions for the language of thought" . PLoS ONE, vol. 13, no. 7, 2018.
http://dx.doi.org/10.1371/journal.pone.0200420
---------- VANCOUVER ----------
Romano, S., Salles, A., Amalric, M., Dehaene, S., Sigman, M., Figueira, S. Bayesian validation of grammar productions for the language of thought. PLoS ONE. 2018;13(7).
http://dx.doi.org/10.1371/journal.pone.0200420