Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees. © 2018 Pometti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Spatial genetic structure within populations and management implications of the South American species Acacia aroma (Fabaceae)
Autor:Pometti, C.; Bessega, C.; Cialdella, A.; Ewens, M.; Saidman, B.; Vilardi, J.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Ecología, Genética y Evolución, Genética de Especies Leñosas (GEEL), Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución (IEGEBA), Buenos Aires, Argentina
IBODA, CONICET, San Isidro, Buenos Aires, Argentina
Estación Experimental Fernández-UCSE (Convenio Provincia Sgo del Estero-, Universidad Católica Sgo del Est.), Departamento de Robles, Santiago del Estero, Argentina
Palabras clave:Acacia; adult; aroma; article; DNA polymorphism; gene mutation; genetic variability; genetic variation; heterozygosity; human; human experiment; major clinical study; male; natural population; neighborhood; nonhuman; plant seed; population density; population genetic structure; sampling; Fabaceae; genetic polymorphism; genetics; plant gene; South America; Fabaceae; Genes, Plant; Polymorphism, Genetic; South America
Año:2018
Volumen:13
Número:2
DOI: http://dx.doi.org/10.1371/journal.pone.0192107
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v13_n2_p_Pometti

Referencias:

  • Peakall, R., Ruibal, M., Lindenmayer, D.B., Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes (2003) Evolution, 57, pp. 1182-1195. , PMID: 12836834
  • Moran, E.V., Clark, J.S., Estimating seed and pollen movement in a monoecious plant: A hierarchical Bayesian approach integrating genetic and ecological data (2011) Mol Ecol, 20, pp. 1248-1262. , https://doi.org/10.1111/j.1365-294X.2011.05019.x, PMID: 21332584
  • Vekemans, X., Hardy, O.J., New insights from fine-scale spatial genetic structure analyses in plant populations (2004) Mol Ecol, 13, pp. 921-935. , PMID: 15012766
  • Loveless, M.D., Hamrick, J.L., Ecological determinants of genetic structure in plant populations (1984) Annual Rev Ecol Syst, 15, pp. 65-95
  • Loiselle, B.A., Sork, V.L., Nason, J., Graham, C., Spatial genetic structure of a tropical understory shrub, Psy-chotria officinalis (Rubiaceae) (1995) Am J Bot, 82, pp. 1420-1425
  • Young, A., Boyle, T., Brown, T., The population genetic consequences of habitat fragmentation for plants Tree, 10, pp. 413-418
  • Lowe, A.J., Boshier, D., Ward, M., Bacles, C.F.E., Navarro, C., Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees (2005) Heredity, 95, pp. 255-273. , https://doi.org/10.1038/sj.hdy.6800725, PMID: 16094300
  • Rico-Arce, M.L., (2007) American Species of Acacia (Leguminosae: Mimosoideae), , Comisión Nacional para el conocimiento y Uso de la Biodiversidad CONABIO
  • Arroyo, M.T.K., Breeding systems and pollination biology in Leguminosae (1981) Advances in Legume Systematics, 1, pp. 723-769. , Polhill R. M. & Raven H. (editors), Royal Botanic Gardens, Kew
  • Gutierrez, J., Armesto, J.J., El rol del Ganado en la dispersion de las semillas de Acacia caven (Leguminosae) (1981) Ci. & Invest. Agric. (Chile), 10, pp. 3-8
  • Fernández, O.A., Busso, C.A., Arid and semi-arid rangelands: Two thirds of Argentina (1997) Rala Report, 200, p. 20. , N0
  • Vos, R., Hogers, R., Bleeker, M., Reijans, M., Lee, T., Hornes, M., AFLP: A new technique for DNA fingerprinting (1995) Nucl Acids Res, 23, pp. 4407-4414. , PMID: 7501463
  • Pometti, C.L., Bessega, C.F., Vilardi, J.C., Ewens, M., Saidman, B.O., Genetic variation in natural populations of Acacia visco (Fabaceae) belonging to two sub-regions of Argentina using AFLP (2016) Pl Syst Evol, 302, pp. 901-910. , https://doi.org/10.1007/s00606-016-1306-6
  • Foll, M., Gaggiotti, O., A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective (2008) Genetics, 180, pp. 977-993. , https://doi.org/10.1534/genetics.108.092221, PMID: 18780740
  • Vekemans, X., (2002) AFLP-SURV Version 1.0. Distributed by The Author, , Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium
  • Zhivotovsky, L.A., Estimating population structure in diploids with multilocus dominant DNA markers (1999) Mol Ecol, 8, pp. 907-913. , PMID: 10434412
  • Lynch, M., Milligan, B.G., Analysis of population structure with RAPD markers (1994) Mol Ecol, 3, pp. 91-99
  • Nei, M., Analysis of gene diversity in subdivided populations (1973) Proc Natl Acad Sci, 70, pp. 3321-3323. , U.S.A PMID: 4519626
  • Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals (1978) Genetics, 89, pp. 583-590. , PMID: 17248844
  • Excoffier, L., Smouse, P., Quattro, J., Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data (1992) Genetics, 131, pp. 479-491. , PMID: 1644282
  • Dyer, R.J., Westfall, R.W., Sork, V.L., Smouse, P.E., Two-generation analysis of pollen flow across a landscape V: A stepwise approach for extracting factors contributing to pollen structure (2004) Heredity, 92 (3), pp. 204-211. , https://doi.org/10.1038/sj.hdy.6800397, PMID: 14722580
  • Dyer, R.J., (2008) GeneticStudio: Population Genetic Software That Doesn’T Suck, , http://dyerlab.bio.vcu.edu
  • Wright, S., (1978) Evolution and The Genetics of Populations Variability Within and Among Natural Populations, 4. , University of Chicago Press, Chicago
  • Goudet, J., (2014) Hierfstat: Estimation and Tests of Hierarchical F-Statistics. R Package Version 0, , 04–14
  • (2016) R: A Language and Environment for Statistical Computing, , http://www.R-project.org, R Foundation for Statistical Computing: Vienna, Austria
  • Dray, S., Dufour, A.B., The ade4 package: Implementing the duality diagram for ecologists (2007) J Statistical Softw, 22 (4), pp. 1-20
  • Pritchard, J.K., Wen, X., Falush, D., STRUCTURE Ver. 2.3. 2009, , http://pritch.bsd.uchicago.edu/, University of Chicago, Chicago, USA
  • Guillot, G., Mortier, F., Estoup, A., GENELAND: A computer package for landscape genetics (2005) Mol Ecol Notes, 5, pp. 712-715
  • Evanno, G., Regnaut, S., Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study (2005) Mol Ecol, 14, pp. 2611-2620. , https://doi.org/10.1111/j.1365294X.2005.02553.x, PMID: 15969739
  • Earl, D.A., VonHoldt, B.M., Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method (2012) Conservation Genet Resour, 4, p. 359. , https://doi.org/10.1007/s12686-011-9548-7
  • Jakobsson, M., Rosenberg, N.A., CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure (2007) Bioinformatics, 23, pp. 1801-1806. , https://doi.org/10.1093/bioinformatics/btm233, PMID: 17485429
  • Rosenberg, N.A., Distruct: A program for the graphical display of population structure (2004) Mol Ecol Notes, 4, pp. 137-138
  • Hardy, O.J., Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers (2003) Mol Ecol, 12, pp. 1577-1588. , PMID: 12755885
  • Casiva, P.V., Vilardi, J.C., Cialdella, A.M., Saidman, B.O., Mating system and population structure of Acacia aroma and A. Macracantha (Fabacecae) (2004) Am J Bot, 91 (1), pp. 58-64. , https://doi.org/10.3732/ajb.91.1.58, PMID: 21653363
  • Hardy, O.J., Vekemans, X., Spagedi: A versatile computer program to analyse spatial genetic structure at the individual or population levels (2002) Mol Ecol Notes, 2, pp. 618-620
  • Rousset, F., Genetic differentiation between individuals (2000) J Evol Biol, 13, pp. 58-62
  • Pometti, C.L., Bessega, C.F., Vilardi, J.C., Cialdella, A.M., Saidman, B.O., Genetic diversity within and among two Argentinean and one Mexican species of Acacia (Fabaceae) (2015) Bot J Linn Soc, 177, pp. 593-606. , https://doi.org/10.1111/boj.12262
  • Nybom, H., Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants (2004) Mol Ecol, 13, pp. 1143-1155. , https://doi.org/10.1111/j.1365-294X.2004.02141.x, PMID: 15078452
  • Pometti, C.L., Bessega, C.F., Vilardi, J.C., Saidman, B.O., Landscape genetic structure of natural populations of Acacia caven in Argentina (2012) Tree Genet Genomes, 8, pp. 911-924. , https://doi.org/10.1007/s11295-012-0479-6
  • Chiveu, C.J., Dangasuk, O.G., Omunyin, M.E., Wachira, F.N., Genetic diversity in Kenyan populations of Acacia Senegal (L.) willd revealed by combined RAPD and ISSR markers (2008) African J Biotech, 7, pp. 2333-2340
  • Hedrick, P.W., (2005) Genetic of Populations, pp. 505-507. , 3rd edition; Jones and Bartlett Publishers, Sudbury, Massachusetts. Chapter 9
  • Hamrick, J.L., Godt, M.J.W., Allozyme diversity in plant species (1989) Plant Population Genetics, Breeding and Genetic Resourses, pp. 43-63. , Brown AHD, Clegg MT, Kahler AL, Weir BS, eds. Sunderland, MA: Sinauer Associates
  • Omondi, S.F., Kireger, E., Dangasuk, O.G., Chikamai, B., Odee, D.W., Cavers, S., Khasa, D.P., Genetic diversity and population structure of acacia Senegal (L) Willd. In Kenya (2010) Tropical Plant Biology, 3, pp. 59-70
  • Pometti, C.L., Vilardi, J.C., Saidman, B.O., Mating system parameters and genetic structure in Argentinean populations of Acacia caven (Leguminosae, Mimosoideae) (2011) Pl Syst Evol, 292, pp. 25-32. , https://doi.org/10.1007/s00606-010-0389-8
  • Pometti, C.L., Bessega, C.F., Vilardi, J.C., Saidman, B.O., Comparison of mating system parameters and genetic structure in three natural scenarios of Acacia visco (Leguminosae, Mimosoideae) (2013) Pl Syst Evol, 299, pp. 761-771. , https://doi.org/10.1007/s00606-013-0759-0
  • Huang, C.L., Chen, J.H., Tsang, M.H., Chung, J.D., Chang, C.T., Hwang, S.Y., Influences of environmental and spatial factors on genetic and epigenetic variations in Rhododendron oldhamii (Ericaceae) (2015) Tree Genet Genomes, 11, p. 823. , https://doi.org/10.1007/s11295-014-0823-0
  • Lemos, R.P.M., D’Oliveira, C.B., Stefenon, V.M., Genetic structure and internal gene flow in populations of Schinus molle (Anacardiaceae) in the Brazilian Pampa (2015) Tree Genet Genomes, 11, p. 75. , https://doi.org/10.1007/s11295-015-0885-7
  • Bessega, C., Pometti, C.L., Ewens, M., Saidman, B.O., Vilardi, J.C., Fine-scale spatial genetic structure analysis in two Argentine populations of Prosopis alba (Mimosoideae) with different levels of ecological disturbance (2016) Eur J Forest Res, 135, pp. 495-505. , https://doi.org/10.1007/s10342-016-0948-9
  • Hardy, O.J., Maggia, L., Bandou, E., Breyne, P., Caron, H., Chevallier, M.E., Doligez, A., Degen, B., Fine-scale genetic structure and gene dispersal influences in 10 neotropical tree species (2006) Mol Ecol, 15, pp. 559-571. , https://doi.org/10.1111/j.1365294X.2005.02785.x, PMID: 16448421
  • Curtu, A.L., Craciunesc, I., Enescu, C.M., Vidalis, A., Sofletea, N., Finescale spatial genetic structure in a multi-oak-species (Quercus spp.) forest (2015) iForest, 8, pp. 324-332. , https://doi.org/10.3832/ifor1150-007
  • Hamrick, J.L., The distribution of genetic variation within and among natural plant populations (1983) Genetics and Conservation, pp. 335-348. , Schone-wald-Cox C.M., Chambers S.M., McBryde B., Thomas W.L. (Eds.), Benjamin/Cummings, Menlo Park, California, USA
  • Francisco-Ortega, J., Santos-Guerra, A., Kim, S.C., Crawford, D.J., Plant genetic diversity in the Canary Islands: A conservation perpective (2000) Am J Bot, 87, pp. 909-919. , PMID: 10898768

Citas:

---------- APA ----------
Pometti, C., Bessega, C., Cialdella, A., Ewens, M., Saidman, B. & Vilardi, J. (2018) . Spatial genetic structure within populations and management implications of the South American species Acacia aroma (Fabaceae). PLoS ONE, 13(2).
http://dx.doi.org/10.1371/journal.pone.0192107
---------- CHICAGO ----------
Pometti, C., Bessega, C., Cialdella, A., Ewens, M., Saidman, B., Vilardi, J. "Spatial genetic structure within populations and management implications of the South American species Acacia aroma (Fabaceae)" . PLoS ONE 13, no. 2 (2018).
http://dx.doi.org/10.1371/journal.pone.0192107
---------- MLA ----------
Pometti, C., Bessega, C., Cialdella, A., Ewens, M., Saidman, B., Vilardi, J. "Spatial genetic structure within populations and management implications of the South American species Acacia aroma (Fabaceae)" . PLoS ONE, vol. 13, no. 2, 2018.
http://dx.doi.org/10.1371/journal.pone.0192107
---------- VANCOUVER ----------
Pometti, C., Bessega, C., Cialdella, A., Ewens, M., Saidman, B., Vilardi, J. Spatial genetic structure within populations and management implications of the South American species Acacia aroma (Fabaceae). PLoS ONE. 2018;13(2).
http://dx.doi.org/10.1371/journal.pone.0192107