Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Psychrotroph microorganisms have developed cellular mechanisms to cope with cold stress. Cell envelopes are key components for bacterial survival. Outer membrane is a constituent of Gram negative bacterial envelopes, consisting of several components, such as lipopolysaccharides (LPS). In this work we investigated the relevance of envelope characteristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our results showed that wapH strain is impaired to grow under low temperature but not for cold survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications of envelope nanomechanical properties such as lower flexibility and higher turgor pressure, cell permeability and surface area to volume ratio (S/V). Changes in these characteristics were also observed in the wild type strain grown at different temperatures, showing higher cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indicated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain. Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at different temperatures, showed a mosaic pattern of aggregation. These results indicate that wapH mutation provoked marked envelope alterations showing that LPS core conservation appears as a novel essential feature for active growth under cold conditions. © 2018 Benforte et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis
Autor:Benforte, F.C.; Colonnella, M.A.; Ricardi, M.M.; Solar Venero, E.C.; Lizarraga, L.; López, N.I.; Tribelli, P.M.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigaciones en Bionanociencias, CONICET, Buenos Aires, Argentina
Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
IQUIBICEN, CONICET, Buenos Aires, Argentina
Palabras clave:glycosyltransferase; lipopolysaccharide; glycosyltransferase; lipopolysaccharide; acclimatization; Article; bacterial growth; bacterial strain; cell flexibility; cell function; cell interaction; cell membrane permeability; cold acclimatization; cold shock response; controlled study; limit of quantitation; low temperature; nonhuman; phenotype; Pseudomonas; Pseudomonas extremaustralis; turgor pressure; adaptation; Antarctica; bacterial gene; cold; enzymology; genetics; metabolism; physiology; Pseudomonas; real time polymerase chain reaction; Adaptation, Physiological; Antarctic Regions; Cold Temperature; Genes, Bacterial; Glycosyltransferases; Lipopolysaccharides; Pseudomonas; Real-Time Polymerase Chain Reaction
Año:2018
Volumen:13
Número:2
DOI: http://dx.doi.org/10.1371/journal.pone.0192559
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:glycosyltransferase, 9033-07-2; Glycosyltransferases; Lipopolysaccharides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v13_n2_p_Benforte

Referencias:

  • Rodrigues, D.F., Tiedje, J.M., Coping with our cold planet (2008) Applied and Environmental Microbiology, pp. 1677-1686. , https://doi.org/10.1128/AEM.02000-07, PMID: 18203855
  • Amico, S.D., Collins, T., Marx, J., Feller, G., Gerday, C., (2006) Psychrophilic Microorganisms: Challenges for Life, 7, pp. 5-9. , https://doi.org/10.1038/sj.embor.7400662, PMID: 16585939
  • Chattopadhyay, M.K., Raghu, G., Sharma, Y.V.R.K., Biju, A.R., Rajasekharan, M.V., Shivaji, S., Increase in oxidative stress at low temperature in an antarctic Bacterium (2011) Curr Microbiol, 62, pp. 544-546. , https://doi.org/10.1007/s00284-010-9742-y, PMID: 20730433
  • Godin-Roulling, A., Schmidpeter, P.A.M., Schmid, F.X., Feller, G., Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures (2015) Environ Microbiol, 17, pp. 2407-2420. , https://doi.org/10.1111/1462-2920.12707, PMID: 25389111
  • Tribelli, P.M., Venero, E.C.S., Ricardi, M.M., Gómez-Lozano, M., Iustman, L.J.R., Molin, S., Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium pseudomonas extremaustralis (2015) PLoS One, 10. , https://doi.org/10.1371/journal.pone.0145353, PMID: 26671564
  • Silhavy, T., Kahne, D., Walker, S., The bacterial cell envelope (2010) Cold Spring Harbor Perspectives in Biology, pp. 1-16. , https://doi.org/10.1101/cshperspect.a000414, PMID: 20452953
  • Appanna, V.D., Hamel, R.D., Pankar, E.P., Bioaccumulation of yttrium in Pseudomonas fluorescens and the role of the outer membrane component(s). No Title (2001) Microbios, 106, pp. 19-29. , D S
  • Ansari, M.A., Khan, H.M., Khan, A.A., Cameotra, S.S., Saquib, Q., Musarrat, J., Interaction of Al2O3 nanoparti-cles with Escherichia coli and their cell envelope biomolecules (2014) J Appl Microbiol, 116, pp. 772-783. , https://doi.org/10.1111/jam.12423, PMID: 24354999
  • Guyard-Nicodème, M., Bazire, A., Hémery, G., Meylheuc, T., Mollé, D., Orange, N., Outer membrane modifications of Pseudomonas fluorescens MF37 in response to hyperosmolarity (2008) J Proteome Res, 7, pp. 1218-1225. , https://doi.org/10.1021/pr070539x, PMID: 18217705
  • Daugelavicius, R., Bakiene, E., Bamford, D.H., Stages of polymyxin B interaction with the Escherichia coli cell envelope (2000) Antimicrob Agents Chemother, 44, pp. 2969-2978. , https://doi.org/10.1128/AAC.44.11.2969-2978.2000, PMID: 11036008
  • Lam, J.S., Taylor, V.L., Islam, S.T., Hao, Y., Kocíncová, D., Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide (2011) Front Microbiol, 2, pp. 1-25
  • King, J.D., Kocincova, D., Westman, E.L., Lam, J.S., Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa (2009) Innate Immun, 15, pp. 261-312. , https://doi.org/10.1177/1753425909106436, PMID: 19710102
  • López, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Põtter, M., Steinbüchel, A., Pseudomonas extremaustralis sp. Nov., a poly(3-hydroxybutyrate) producer isolated from an antarctic environment (2009) Curr Microbiol, 59, pp. 514-519. , https://doi.org/10.1007/s00284-009-9469-9, PMID: 19688380
  • Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14–3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66. , https://doi.org/10.1007/s00792-008-0197-z, PMID: 18931822
  • Tribelli, P.M., López, N.I., Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions (2011) Extremophiles, 15, pp. 541-547. , https://doi.org/10.1007/s00792-011-0384-1, PMID: 21667094
  • Raiger Iustman, L.J., Tribelli, P.M., Ibarra, J.G., Catone, M.V., Solar Venero, E.C., López, N.I., Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance (2015) Extremophiles, 19, pp. 207-220. , https://doi.org/10.1007/s00792-014-0700-7, PMID: 25316211
  • Kumar, G.S., Jagannadham, M.V., Ray, M.K., Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the antarctic psychrotrophic bacterium Pseudomonas syringae (2002) J Bacteriol, 184, pp. 6746-6749. , https://doi.org/10.1128/JB.184.23.6746-6749.2002, PMID: 12426366
  • Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14–3 during low temperature adaptation (2009) Extremophiles, 13. , https://doi.org/10.1007/s00792-008-0197-z, PMID: 18931822
  • De Lorenzo, V., Herrero, M., Jakubzik, U., Timmis, K.N., Mini-Tn5 transposoon derivatives for insertion muta-genesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria (1990) J Bacteriol, 172, pp. 6568-6572. , 0021-9193/90/116568-05 PMID: 2172217
  • McPhee, J.B., Lewenza, S., Hancock, R.E.W., Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa (2003) Mol Microbiol, 50, pp. 205-217. , https://doi.org/10.1046/j.13652958.2003.03673.x, PMID: 14507375
  • Kovach, M.E., Elzer, P.H., Steven Hill, D., Robertson, G.T., Farris, M.A., Roop, R.M., Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes (1995) Gene, 166, pp. 175-176. , https://doi.org/10.1016/0378-1119(95)00584-1, PMID: 8529885
  • Spiers, A.J., Rainey, P.B., The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity (2005) Microbiology, 151, pp. 2829-2839. , https://doi.org/10.1099/mic.0.27984-0, PMID: 16151196
  • Karkhanis, Y.D., Zeltner, J.Y., Jackson, J.J., Carlo, D.J., A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria (1978) Anal Biochem, 85, pp. 595-601. , https://doi.org/10.1016/0003-2697(78)90260-9, PMID: 646115
  • Reuhs, B.L., Geller, D.P., Kim, J.S., Fox, J.E., Kolli, V.S.K., Pueppke, S.G., Sinorhizobium fredii and Sinorhizobium melilotiproduce structurally conserved lipopolysaccharide and strain specific K-antigens (1998) Appl Env Microbiol, 64, pp. 4930-4938
  • Sherlock, O., Vejborg, R.M., Klemm, P., (2005) The TibA Adhesin / Invasin from Enterotoxigenic Escherichia coli Is Self Recognizing and Induces Bacterial Aggregation and Biofilm Formation, 73, pp. 1954-1963
  • Tribelli, P.M., Hay, A.G., López, N.I., The global anaerobic regulator anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in pseudomonas extremaustralis (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0076685, PMID: 24146909
  • Francius, G., Polyakov, P., Merlin, J., Abe, Y., Ghigo, J.M., Merlin, C., Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress (2011) PLoS One, 6. , https://doi.org/10.1371/journal.pone.0020066, PMID: 21655293
  • Nečas, D., Klapetek, P., Gwyddion: An open-source software for SPM data analysis (2012) Open Phys, 10, pp. 181-188. , https://doi.org/10.2478/s11534-011-0096-2
  • Touhami, A., Nysten, B., Dufrêne, Y.F., Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy (2003) Langmuir, pp. 4539-4543. , https://doi.org/10.1021/la034136x
  • Gaboriaud, F., Parcha, B.S., Gee, M.L., Holden, J.A., Strugnell, R.A., Spatially resolved force spectroscopy of bacterial surfaces using force-volume imaging (2008) Colloids Surfaces B Biointerfaces, 62, pp. 206-213. , https://doi.org/10.1016/j.colsurfb.2007.10.004, PMID: 18023156
  • Gaboriaud, F., Gee, M.L., Strugnell, R., Duval, J.F.L., Coupled electrostatic, hydrodynamic, and mechanical properties of bacterial interfaces in aqueous media (2008) Langmuir, 24, pp. 10988-10995. , https://doi.org/10.1021/la800258n, PMID: 18512877
  • Arnoldi, M., Fritz, M., Bäuerlein, E., Radmacher, M., Sackmann, E., Boulbitch, A., Bacterial turgor pressure can be measured by atomic force microscopy (2000) Phys Rev E—Stat Physics, Plasmas, Fluids, Relat Interdiscip Top, 62, pp. 1034-1044. , https://doi.org/10.1103/PhysRevE.62.1034
  • Wang, H., Wilksch, J.J., Strugnell, R.A., Gee, M.L., Role of capsular polysaccharides in biofilm formation: An afm nanomechanics study (2015) ACS Appl Mater Interfaces, 7, pp. 13007-13013. , https://doi.org/10.1021/acsami.5b03041, PMID: 26034816
  • Radmacher, M., Fritz, M., Hansma, P.K., Imaging soft samples with the atomic force microscope: Gelatin in water and propanol (1995) Biophys J, 69, pp. 264-270. , https://doi.org/10.1016/S0006-3495(95)79897-6, PMID: 7669903
  • Wang, H., Wilksch, J.J., Lithgow, T., Strugnell, R.A., Gee, M.L., Nanomechanics measurements of live bacteria reveal a mechanism for bacterial cell protection: The polysaccharide capsule in Klebsiella is a responsive polymer hydrogel that adapts to osmotic stress (2013) Soft Matter, 9, p. 7560. , https://doi.org/10.1039/c3sm51325d
  • Schmittgen, T.D., Livak, K.J., Analyzing real-time PCR data by the comparative CT method (2008) Nat Protoc, 3, pp. 1101-1108. , https://doi.org/10.1038/nprot.2008.73, PMID: 18546601
  • King, J.D., Berry, S., Clarke, B.R., Morris, R.J., Whitfield, C., Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli O9a (2014) Proc Natl Acad Sci, 111, pp. 6407-6412. , https://doi.org/10.1073/pnas.1400814111, PMID: 24733938
  • Lau, P.C.Y., Lindhout, T., Beveridge, T.J., Dutcher, J.R., Lam, J.S., Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms (2009) J Bacteriol, 191, pp. 6618-6631. , https://doi.org/10.1128/JB.00698-09, PMID: 19717596
  • Moreno, R., Rojo, F., Features of pseudomonads growing at low temperatures: Another facet of their versatility (2014) Environ Microbiol Rep, 6, pp. 417-426. , https://doi.org/10.1111/1758-2229.12150, PMID: 25646532
  • Fonseca, P., Moreno, R., Rojo, F., Growth of Pseudomonas putida at low temperature: Global transcriptomic and proteomic analyses (2011) Environ Microbiol Rep, 3, pp. 329-339. , https://doi.org/10.1111/j.1758-2229.2010.00229.x, PMID: 23761279
  • Loffhagen, N., Hartig, C., Babel, W., Pseudomonas putida NCTC 10936 Balances Membrane Fluidity in Response to Physical and Chemical Stress by Changing the Saturation Degree and the Trans / cis Ratio of Fatty Acids (2004) Biosci Biotechnol Biochem, 68, pp. 317-323. , https://doi.org/10.1271/bbb.68.317, PMID: 14981294
  • Kiran, M.D., Annapoorni, S., Suzuki, I., Murata, N., Shivaji, S., Cis-trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress (2005) Extremophiles, 9, pp. 117-125. , https://doi.org/10.1007/s00792-005-0435-6, PMID: 15747056
  • Fondi, M., Maida, I., Perrin, E., Mellera, A., Mocali, S., Parrilli, E., Genome scale metabolic reconstruction and constraints-based modelling of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (2014) Environ Microbiol, , https://doi.org/10.1111/1462-2920.12513, n/a–n/a. PMID: 24889559
  • Stokes, J.M., French, S., Ovchinnikova, O.G., Bouwman, C., Whitfield, C., Brown, E.D., Cold Stress Makes Escherichia coli Susceptible to Glycopeptide Antibiotics by Altering Outer Membrane Integrity (2016) Cell Chem Biol, 23, pp. 267-277. , https://doi.org/10.1016/j.chembiol.2015.12.011, Elsevier Ltd; PMID: 26853624
  • Corsaro, M.M., Pieretti, G., Lindner, B., Lanzetta, R., Parrilli, E., Tutino, M.L., Highly phosphorylated core oligosaccaride structures from cold-adapted Psychromonas arctica (2008) Chem—A Eur J, 14, pp. 9368-9376. , https://doi.org/10.1002/chem.200800117, PMID: 18770509
  • Ray, M.K., Kumar, G.S., Shivaji, S., Phosphorylation of lipopolysaccharides in the antarctic psychrotroph Pseudomonas syringae: A possible role in temperature adaptation (1994) J Bacteriol, 176, pp. 4243-4249. , PMID: 8021210
  • Meredith, T.C., Mamat, U., Kaczynski, Z., Lindner, B., Holst, O., Woodard, R.W., Modification of lipopolysaccharide with colanic acid (M-antigen) repeats in Escherichia coli (2007) J Biol Chem, 282, pp. 7790-7798. , https://doi.org/10.1074/jbc.M611034200, PMID: 17227761
  • Chalabaev, S., Chauhan, A., Novikov, A., Iyer, P., Szczesny, M., Beloin, C., Biofilms formed by gram-negative bacteria undergo increased lipid a palmitoylation, Enhancing in vivo survival (2014) MBio, 5. , https://doi.org/10.1128/mBio.01116-14, PMID: 25139899
  • Lerouge, I., Vanderleyden, J., O-antigen structural variation: Mechanisms and possible roles in animal/ plant-microbe interactions (2002) FEMS Microbiology Reviews, pp. 17-47
  • Klebensberger, J., Lautenschlager, K., Bressler, D., Wingender, J., Philipp, B., Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy (2007) Environ Microbiol, 9, pp. 2247-2259. , https://doi.org/10.1111/j.1462-2920.2007.01339.x, PMID: 17686022
  • Monier, J.-M., Lindow, S.E., Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces (2003) Proc Natl Acad Sci, 100, pp. 15977-15982. , https://doi.org/10.1073/pnas.2436560100, PMID: 14665692
  • Batchelor, E., Walthers, D., Kenney, L.J., Goulian, M., The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins OmpF and OmpC (2005) J Bacteriol, 187, pp. 5723-5731. , https://doi.org/10.1128/JB.187.16.5723-5731.2005, PMID: 16077119
  • Budde, I., Steil, L., Scharf, C., Völker, U., Bremer, E., Adaptation of Bacillus subtilis to growth at low temperature: A combined transcriptomic and proteomic appraisal (2006) Microbiology, 152, pp. 831-853. , https://doi.org/10.1099/mic.0.28530-0, PMID: 16514163
  • Harris, L.K., Theriot, J.A., Relative rates of surface and volume synthesis set bacterial cell size (2016) Cell, 165, pp. 1479-1492. , https://doi.org/10.1016/j.cell.2016.05.045, Elsevier Inc.; PMID: 27259152
  • Cefalì, E., Patanè, S., Arena, A., Saitta, G., Guglielmino, S., Cappello, S., Morphologic variations in bacteria under stress conditions: Near-field optical studies (2002) Scanning, 24, pp. 274-283. , http://www.ncbi.nlm.nih.gov/pubmed/12507381, Available: PMID: 12507381

Citas:

---------- APA ----------
Benforte, F.C., Colonnella, M.A., Ricardi, M.M., Solar Venero, E.C., Lizarraga, L., López, N.I. & Tribelli, P.M. (2018) . Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS ONE, 13(2).
http://dx.doi.org/10.1371/journal.pone.0192559
---------- CHICAGO ----------
Benforte, F.C., Colonnella, M.A., Ricardi, M.M., Solar Venero, E.C., Lizarraga, L., López, N.I., et al. "Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis" . PLoS ONE 13, no. 2 (2018).
http://dx.doi.org/10.1371/journal.pone.0192559
---------- MLA ----------
Benforte, F.C., Colonnella, M.A., Ricardi, M.M., Solar Venero, E.C., Lizarraga, L., López, N.I., et al. "Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis" . PLoS ONE, vol. 13, no. 2, 2018.
http://dx.doi.org/10.1371/journal.pone.0192559
---------- VANCOUVER ----------
Benforte, F.C., Colonnella, M.A., Ricardi, M.M., Solar Venero, E.C., Lizarraga, L., López, N.I., et al. Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS ONE. 2018;13(2).
http://dx.doi.org/10.1371/journal.pone.0192559