Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cytological diploidization process is different in autopolyploid and allopolyploid species. Colchicine applied at the onset of meiosis suppresses the effect of pairing regulator genes resulting multivalents formation in bivalent-forming species. Colchicine treated maizes (4x = 2n = 20, AmAmBmBm) showed up to 5IV, suggesting pairing between chromosomes from genomes homoeologous Am and Bm. In untreated individuals of the alloautooctoploid Zea perennis (8x = 2n = 40, ApApAp´Ap´Bp1Bp1Bp2Bp2) the most frequent configuration was 5IV +10II (formed by A and B genomes, respectively). The colchicine treated Z. perennis show up to 10IV revealing higher affinity within genomes A and B, but any homology among them. These results suggest the presence of a paring regulator locus (PrZ) in maize and Z. perennis, whose expression is suppressed by colchicine. It could be postulated that in Z. perennis, PrZ would affect independently the genomes A and B, being relevant the threshold of homology, the fidelity of pairing in each genomes and the ploidy level. Cytological analysis of the treated hexaploid hybrids (6x = 2n = 30), with Z. perennis as a parental, strongly suggests that PrZ is less effective in only one doses. This conclusion was reinforced by the homoeologous pairing observed in untreated dihaploid maizes, which showed up to 5II. Meiotic behaviour of individuals treated with different doses of colchicine allowed to postulate that PrZ affect the homoeologous association by controlling entire genomes (Am or Bm) rather than individual chromosomes. Based on cytological and statistical results it is possible to propose that the cytological diploidization in Zea species occurs by restriction of pairing between homoeologous chromosomes or by genetical divergence of the homoeologous chromosomes, as was observed in untreated Z. mays ssp. parviglumis. These are independent but complementary systems and could be acting jointly in the same nucleus. © 2018 Poggio, González. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Cytological diploidization of paleopolyploid genus Zea: Divergence between homoeologous chromosomes or activity of pairing regulator genes?
Autor:Poggio, L.; González, G.E.
Filiación:Instituto de Ecología, Genética y Evolución (IEGEBA, Consejo Nacional de Investigaciones Científicas y Técnicas—CONICET, Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos, Aires, Argentina
Palabras clave:colchicine; colchicine; Article; chromosome bivalent; chromosome pairing; cytology; diploidy; gene expression; gene locus; genetic variability; genus; hexaploidy; maize; nonhuman; octoploidy; paleopolyploid; plant genome; polyploidy; regulator gene; structural homology; Zea; Zea perennis; diploidy; genetics; meiosis; plant chromosome; Chromosomes, Plant; Colchicine; Diploidy; Genes, Regulator; Meiosis; Zea mays
Año:2018
Volumen:13
Número:1
DOI: http://dx.doi.org/10.1371/journal.pone.0189644
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:colchicine, 64-86-8; Colchicine
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v13_n1_p_Poggio

Referencias:

  • Jenczewski, E., Mercier, R., Macaisne, N., Mezard, C., Meiosis: Recombination and the control of cell division (2013) Plant Genome Diversity, 2, pp. 121-136. , Eds. Leitch IJ et al. Springer-Verlag
  • Alix, K., Gérard, P.R., Schwarzacher, T., Heslop-Harrison, J.S., Polyploidy and interspecific hybridization: Partners for adaptation, speciation and evolution in plants (2017) An Bot, 120, pp. 183-194
  • Soltis, D.E., Clayton, J.V., Soltis, P.S., The polyploidy revolution then and now: Stebbins revisited (2014) Am J Bot, 101, pp. 1057-1078. , https://doi.org/10.3732/ajb.1400178, PMID: 25049267
  • Jenczewski, E., Alix, K., From diploids to allopolyploids: The emergence of efficient pairing control genes in plants (2004) Crit Rev Plant Sci, 23, pp. 21-45
  • Ma, X.F., Gustafson, J.P., Genome evolution of allopolyploids: A process of cytological and genetic diploidization (2005) Cytogenet Genome Res, 109, pp. 236-249. , https://doi.org/10.1159/000082406, PMID: 15753583
  • Cifuentes, M., Grandont, L., Moore, G., Chèvre, A.M., Jenczewski, E., Genetic regulation of meiosis in polyploid species: New insights into an old question (2010) New Phytol, 186, pp. 29-36. , https://doi.org/10.1111/j.1469-8137.2009.03084.x, PMID: 19912546
  • Le Comber, S.C., Ainouche, M.L., Kovarik, A., Leitch, A.R., Making a functional diploid: From polysomic to disomic inheritance (2010) New Phytol, 186, pp. 113-122. , https://doi.org/10.1111/j.1469-8137.2009.03117, xPMID: 20028473
  • Feldman, M., Levy, A.A., Genome evolution due to allopolyploidization in wheat (2012) Genetics, 192, pp. 763-774. , https://doi.org/10.1534/genetics.112.146316, PMID: 23135324
  • Bhullar, R., Nagarajan, R., Bennypaul, H., Sidhu, G.K., Sidhu, G., Rustgi, S., Gill, K.S., Silencing of a metaphase I-specific gene results in a phenotype similar to that of the Pairing homoeologous 1 (Ph1) gene mutations (2014) Proc Nat Acad Sci U S A, 111, pp. 14187-14192
  • Mikhailova, E.I., Naranjo, T., Shepherd, K., Wennekes-Van Eden, J., Heyting, C., De Jong, J.H., The effect of the wheat Ph1 locus on chromatin organisation and meiotic chromosome pairing analysed by genome painting (1998) Chromosoma, 107, pp. 339-350. , PMID: 9880767
  • Colas, I., Shaw, P., Prieto, P., Wanous, M., Spielmeyer, W., Mago, R., Moore, G., Effective chromosome pairing requires chromatin remodeling at the onset of meiosis (2008) Proc Nat Acad Sci U S A, 105, pp. 6075-6080
  • Zhou, A., Pawlowski, W.P., Regulation of meiotic gene expression in plants (2014) Front Plant Sci, 5, p. 413. , https://doi.org/10.3389/fpls.2014.00413, PMID: 25202317
  • Poggio, L., Greizerstein, E., Ferrari, M., Variability in the amount of homoeologous pairing among F1 hybrids (2016) AoB PLANTS, 8, p. plw030. , https://doi.org/10.1093/aobpla/plw030, PMID: 27255515
  • Jenczewski, E., Eber, F., Grimaud, A., Huet, S., Lucas, M.O., Monod, H., Chèvre, A.M., PrBn, a major gene controlling homoeologous pairing in oilseed rape (Brassica napus) haploids (2003) Genetics, 164, pp. 645-653. , PMID: 12807785
  • Naranjo, C.A., Molina, M.C., Poggio, L., Evidencias de un numero básico x = 5 en el género Zea y su impor-tancia en estudios del origen del maíz (1990) Acad. Nac. Cs. Ex. Fís. Nat., Buenos Aires, 5, pp. 43-53. , Monografía
  • Naranjo, C.A., Poggio, L., Molina, M.C., Bernatené, E., Increase in multivalent frequency in F1 hybrids of Zea diploperennis × Zea perennis by colchicine treatment (1994) Hereditas, 120, pp. 241-244
  • Poggio, L., Molina, M.C., Naranjo, C.A., Cytogenetic studies in the genus Zea. 2. Colchicine-induced multivalents (1990) Theor Appl Genet, 79, pp. 461-464. , https://doi.org/10.1007/BF00226153, PMID: 24226448
  • Poggio, L., Confalonieri, V., Comas, C., Gonzalez, G., Naranjo, C.A., Genomic affinities of Zea luxurians, Z. Diploperennis and Z. Perennis: Meiotic behaviour of their F1 hybrids and genomic in situ hybridization (GISH) (1999) Genome, 42, pp. 993-1000
  • Poggio, L., Confalonieri, V., Comas, C., Cuadrado, A., Jouve, N., Naranjo, C.A., Genomic in situ hybridization (GISH) of Tripsacum dactyloides and Zea mays ssp. Mays with B chromosomes (1999) Genome, 42, pp. 687-691
  • Poggio, L., Confalonieri, V., Comas, C., González, G., Naranjo, C.A., Evolutionary relationships in the genus Zea: Analysis of repetitive sequences used as cytological FISH and GISH markers (2000) Gen Mol Biol., 23, pp. 1021-1027
  • Poggio, L., Confalonieri, V., Gonzalez, G., Comas, C., Naranjo, C.A., Aportes de la citogenética molecular al análisis de divergencias genómicas crípticas en el género Zea (Poaceae) (2000) Bol Soc Argent Bot., 35, pp. 297-304
  • Poggio, L., González, G.E., Confalonieri, V., Comas, C., Naranjo, C.A., The genome organization and diversification of maize and its allied species revisited: Evidences from classical and FISH-GISH cytogenetics analysis (2005) Cytogenet Genome Res, 109, pp. 259-267. , https://doi.org/10.1159/000082408, PMID: 15753585
  • González, G.E., Confalonieri, V., Comas, C., Naranjo, C.A., Poggio, L., GISH reveals cryptic genetic differences between maize and its putative wild progenitor Zea mays ssp (2004) Parviglumis. Genome, 47, pp. 947-953. , https://doi.org/10.1139/g04-038, PMID: 15499408
  • González, G.E., Comas, C., Confalonieri, V., Naranjo, C.A., Poggio, L., Genomic affinities between maize and Zea perennis using classical and molecular cytogenetic (GISH-FISH) (2006) Chrom Res, 14, pp. 629-635. , https://doi.org/10.1007/s10577-006-1072-3, PMID: 16964569
  • González, G.E., Poggio, L., Karyotype of Zea luxurians and Zea mays ssp. Mays using DAPI/FISH and meiotic behavior of hybrids (2011) Genome, 54, pp. 26-32. , https://doi.org/10.1139/G10-089, PMID: 21217803
  • Driscoll, C.J., Darvey, N.L., Chromosome pairing: Effect of colchicine on an isochromosome (1970) Science, 169, pp. 290-291. , PMID: 5450358
  • Jackson, R.C., Murray, B.G., Colchicine-induced quadrivalent formation in helianthus: Evidence of ancient polyploidy (1983) Theor Appl Genet, 64, pp. 219-222. , https://doi.org/10.1007/BF00303768, PMID: 24264948
  • Feldman, M., Avivi, L., Genetic control of bivalent pairing in common wheat: The mode of Ph1 action (1988) Kew Chromosome Conference III, pp. 269-279. , Brandham PE. Her Majesty’s Stationery Office, London
  • Vega, J.M., Feldman, M., Effect of the pairing gene Ph1 and premeiotic colchicine treatment on intra and interchromosome pairing of isochromosomes in common wheat (1998) Genetics, 150, pp. 1199-1208. , PMID: 9799271
  • Cowan, C.R., Cande, W.Z., Meiotic telomere clustering is inhibited by colchicine but does not require cytoplasmic microtubules (2002) J Cell Sci, 115, pp. 3747-3756. , PMID: 12235285
  • Moore, G., Devos, K.M., Wang, Z., Gale, M.D., Cereal genome evolution. Grasses, line up and form a circle (1995) Curr Biol., 5, p. 737. , 739. PMID: 7583118
  • Gaut, B.S., Doebley, J.F., DNA sequence evidence for the segmental allotetraploid origin of maize (1997) Proc Nat Acad Sci U S A, 94, pp. 6809-6814
  • White, S., Doebley, J., Of genes and genomes and the origin of maize (1998) Trends Genet, 14, pp. 327-332. , PMID: 9724966
  • Soltis, D.E., Soltis, P.S., Polyploidy: Recurrent formation and genome evolution (1999) TREE, 14, pp. 48-352
  • Swigonova, Z., Lai, J., Ma, J., Ramakrishna, W., Llaca, V., Bennetzen, J.L., Messing, J., On the tetraploid origin of the maize genome (2004) Comp Funct Genomics, 5, pp. 281-284. , https://doi.org/10.1002/cfg.395PMID, 18629160
  • Wei, F., Coe, E., Nelson, W., Physical and genetic structure of the maize genome reflects its complex evolutionary history (2007) PLOS Genetics, , https://doi.org/10.1371/journal.pgen.0030123, PMID: 17658954
  • Schnable, J.C., Springer, N.M., Freeling, M., Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss (2011) Proc Nat Acad Sci U S A, 108, pp. 4069-4074
  • Correa, J., (2006) Duplicación Cromosómica En Haploides De Maíz (Zea Mays L.): Efecto Del Método De Duplica-Ción Y De La Dosis De Colchicina Sobre Distintos Grupos Heteróticos, , Mgs Thesis Universidad Nacional de Rosario, Argentina
  • Poggio, L., Rosato, M., Mazoti, L.B., Naranjo, C.A., Variable meiotic behavior among plants of an alloplasmic line of maize (1997) Cytologia, 62, pp. 271-274
  • González, G.E., Poggio, L., Genomic affinities revealed by GISH suggests intergenomic restructuring between parental genomes of the paleopolyploid genus Zea (2015) Genome, 58, pp. 433-439. , https://doi.org/10.1139/gen-2015-0081, PMID: 26506040
  • McClintock, B., The association of non-homologous parts of chromosomes in the midprofhase of meiosis in Zea mays (1933) Zellforsch Mikrosk Anat, 19, pp. 191-237
  • Ting, Y.C., Meiosis and fertility of anther culture-derived maize plant (1985) Maydica, 30, pp. 161-169
  • Molina, M.C., (2011) Estudios Citogenéticos Evolutivos Del Género Zea, , https://riunet.upv.es/bitstream/handle/10251/9912/tesisUPV3467.pdf, Phd Thesis, Universidad Politécnica de Valencia, Spain
  • Ding, L., Zhao, Z.G., Ge, X.H., Li, Z.Y., Different timing and spatial separation of parental chromosomes in intergeneric somatic hybrids between Brassica napus and Orychophragmus violaceus (2014) Genet Mol Res, 13, pp. 1618-2611
  • Han, J., Zhou, B., Shan, W., Yu, L., Wu, W., Wang, K., A and D genomes spatial separation at somatic metaphase in tetraploid cotton: Evidence for genomic disposition in a polyploid plant (2015) Plant J, 84, pp. 1167-1177. , PMID: 26568399
  • Jones, R.N., Langdon, T., The plant nucleus at war and peace: Genome organization in the interphase nucleus (2013) Plant Genome Diversity, 2, pp. 13-31. , Eds. Leitch IJ et al. Springer-Verlag

Citas:

---------- APA ----------
Poggio, L. & González, G.E. (2018) . Cytological diploidization of paleopolyploid genus Zea: Divergence between homoeologous chromosomes or activity of pairing regulator genes?. PLoS ONE, 13(1).
http://dx.doi.org/10.1371/journal.pone.0189644
---------- CHICAGO ----------
Poggio, L., González, G.E. "Cytological diploidization of paleopolyploid genus Zea: Divergence between homoeologous chromosomes or activity of pairing regulator genes?" . PLoS ONE 13, no. 1 (2018).
http://dx.doi.org/10.1371/journal.pone.0189644
---------- MLA ----------
Poggio, L., González, G.E. "Cytological diploidization of paleopolyploid genus Zea: Divergence between homoeologous chromosomes or activity of pairing regulator genes?" . PLoS ONE, vol. 13, no. 1, 2018.
http://dx.doi.org/10.1371/journal.pone.0189644
---------- VANCOUVER ----------
Poggio, L., González, G.E. Cytological diploidization of paleopolyploid genus Zea: Divergence between homoeologous chromosomes or activity of pairing regulator genes?. PLoS ONE. 2018;13(1).
http://dx.doi.org/10.1371/journal.pone.0189644