Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

As the main agricultural insect pollinator, the honey bee (Apis mellifera) is exposed to a number of agrochemicals, including glyphosate (GLY), the most widely used herbicide. Actually, GLY has been detected in honey and bee pollen baskets. However, its impact on the honey bee brood is poorly explored. Therefore, we assessed the effects of GLY on larval development under chronic exposure during in vitro rearing. Even though this procedure does not account for social compensatory mechanisms such as brood care by adult workers, it allows us to control the herbicide dose, homogenize nutrition and minimize environmental stress. Our results show that brood fed with food containing GLY traces (1.25-5.0 mg per litre of food) had a higher proportion of larvae with delayed moulting and reduced weight. Our assessment also indicates a non-monotonic dose-response and variability in the effects among colonies. Differences in genetic diversity could explain the variation in susceptibility to GLY. Accordingly, the transcription of immune/detoxifying genes in the guts of larvae exposed to GLY was variably regulated among the colonies studied. Consequently, under laboratory conditions, the response of honey bees to GLY indicates that it is a stressor that affects larval development depending on individual and colony susceptibility. © 2018 Vázquez et al.

Registro:

Documento: Artículo
Título:Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies
Autor:Vázquez, D.E.; Ilina, N.; Pagano, E.A.; Zavala, J.A.; Farina, W.M.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, (INBA), Buenos Aires, Argentina
Año:2018
Volumen:13
Número:10
DOI: http://dx.doi.org/10.1371/journal.pone.0205074
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v13_n10_p_Vazquez

Referencias:

  • Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Importance of pollinators in changing landscapes for world crops (2007) Proc. R Soc. B, 274 (1608), pp. 303-313. , https://doi.org/10.1098/rspb.2006.3721
  • McGregor, S.E., USDA Insect pollination of cultivated crop plants (1976) Agricultural Research Service, 496, pp. 1-849
  • Brodschneider, R., Crailsheim, K., Nutrition and health in honey bees (2010) Apidologie, 41 (3), pp. 278-294
  • Alaux, C., Ducloz, F., Crauser, D., Le Conte, Y., Diet effects on honeybee immunocompetence (2010) Biology Letters
  • McEwen, B.S., Stress, adaptation, and disease: Allostasis and allostatic load (1998) Annals of the New York Academy of Sciences, 840 (1), pp. 33-44
  • VanEngelsdorp, D., Meixner, M.D., A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them (2010) Journal of Invertebrate Pathology, 103, pp. S80-S95. , https://doi.org/10.1016/j.jip.2009.06.011
  • Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W.E., Global pollinator declines: Trends, impacts and drivers (2010) Trends in Ecology & Evolution, 25 (6), pp. 345-353
  • Evans, J.D., Spivak, M., Socialized medicine: Individual and communal disease barriers in honey bees (2010) Journal of Invertebrate Pathology, 103, pp. S62-S72. , https://doi.org/10.1016/j.jip.2009.06.019
  • James, C., (2016) Global Status of Commercialized Biotech/GM Crops, , http://www.isaaa.org/resources/publications/briefs/52, [Internet]. ISAAA Brief 52 2016 [Cited: 2017 Nov 1]
  • Fernandez-Cornejo, J., Wechsler, S.J., (2017) Adoption of Genetically Engineered Crops in the U.S. [Internet]. Economic Research Service (ERS), , http://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-The-us/recent-Trends-inge-Adoption.aspx, USDA [Cited: 2017 Nov 1]
  • Duke, S.O., Powles, S.B., Glyphosate: A once in a century herbicide (2008) Pest Manag Sci, 64 (4), pp. 319-325. , https://doi.org/10.1002/ps.1518
  • Dill, G.M., Sammons, R.D., Feng, P.C., Kohn, F., Kretzmer, K., Mehrsheikh, A., Glyphosate: Discovery development applications and properties (2010) Glyphosate Resistance in Crops and Weeds: History Development and Management, pp. 1-33. , In: Nandula VK editor. John Wiley and Sons
  • Arregui, M.C., Lenardon, A., Sanchez, D., Maitre, M.I., Scotta, R., Enrique, S., Monitoring glyphosate residues in transgenic glyphosate resistant soybean (2004) Pest Manag Sci, 60 (2), pp. 163-166. , https://doi.org/10.1002/ps.775
  • (2005) Plant Production and Protection Paper 183. Pesticides Residues in Food, , FAO. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment (JMPR) and the WHO core assessment group on pesticide residues
  • Nandula, V.K., Reddy, K.N., Duke, S.O., Poston, D.H., Glyphosate-resistant weeds: Current status and future outlook (2005) Outlooks Pest Manag, 16, pp. 183-187
  • Carlisle, S.M., Trevors, J.T., Glyphosate in the environment (1988) Water Air Soil Poll, 39 (3-4), pp. 409-420
  • Bohan, D.A., Boffey, C.W., Brooks, D.R., Clark, S.J., Dewar, A.M., Firbank, L.G., Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-Tolerant winter-sown oilseed rape (2005) Proc. R. Soc. B, 272 (1562), pp. 463-474. , https://doi.org/10.1098/rspb.2004.3049
  • Peruzzo, P.J., Porta, A.A., Ronco, A.E., Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina (2008) Environ. Pollut, 156 (1), pp. 61-66. , https://doi.org/10.1016/j.envpol.2008.01.015
  • Rubio, F., Guo, E., Kamp, L., Survey of glyphosate residues in honey, corn and soy products (2014) J. Environ. Anal. Toxicol, 5, p. 249
  • Gary, N.E., Witherell, P.C., Marston, J., Foraging range and distribution of honeybees used for carrot and onion pollination (1972) Environ Entomol, 1 (1), pp. 71-78
  • Visscher, P.K., Seeley, T.D., Foraging strategy of honeybee colonies in a temperate deciduous forest (1982) Ecology, 63 (6), pp. 1790-1801
  • (2012) USEPA White Paper in Support of the Proposed Risk Assessment Process for Bees, , Chemical safety and pollution prevention. Office of pesticides programs. Environmental fate and effects division
  • Couture, G., Legris Langevin J, R., (1995) Evaluation des Impacts du Glyphosate Utilise dans le Milieu Forestier, , Ministere des Ressources Naturelles Direction de Penvironment forestier Service du suivi environmental Charles-bourg Quebec Canada
  • Giesy, J.P., Dobson, S., Solomon, K.R., Ecotoxicological risk assessment for Roundup herbicide (2000) Rev. Environ. Contam. T, 167, pp. 35-120
  • Solomon, K., Thompson, D., Ecological risk assessment for aquatic organisms from over-water uses of glyphosate (2003) J. Tox. Env. Health, 6 (3), pp. 289-324
  • Herbert, L.T., Vazquez, D.E., Arenas, A., Farina, W.M., Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour (2014) J. Exp. Biol, 217 (19), pp. 3457-3464
  • Goñalons, C.M., Farina, W.M., Impaired associative learning after chronic exposure to pesticides in young adult honey bees (2018) J. Exp. Biol, 221 (7), p. jeb176644
  • Balbuena, M.S., Tison, L., Hahn, M.L., Greggers, U., Menzel, R., Farina, W.M., Effects of sublethal doses of glyphosate on honeybee navigation (2015) J. Exp. Biol, 218 (17), pp. 2799-2805
  • Tate, T.M., Spurlock, J.O., Christian, F.A., Effect of glyphosate on the development of Pseudosuccinea columella snails (1997) Arch. Environ. Con. Tox, 33 (3), pp. 286-289
  • Cauble, K., Wagner, R.S., Sublethal effects of the herbicide glyphosate on amphibian metamorphosis and development (2005) B. Environ. Contam. Tox, 75 (3), pp. 429-435
  • Dutra, B.K., Fernandes, F.A., Failace, D.M., Oliveira, G.T., Effect of roundup (glyphosate formulation) in the energy metabolism and reproductive traits of Hyalella castroi (Crustacea, Amphipoda, Dogielinotidae (2011) Ecotoxicology, 20 (1), pp. 255-263. , https://doi.org/10.1007/s10646-010-0577-x
  • Bertholf, L.M., The moults of the honeybee (1925) J. Econ. Entomol, 18 (2), pp. 380-384
  • Rembold, H., Kremer, J.P., Ulrich, G.M., Characterization of postembryonic developmental stages (1980) Apidologie, 11 (1), pp. 29-38
  • De F Michelette, E.R., Soares, A.E.E., Characterization of preimaginal developmental stages in Africanized honeybee workers (1993) Apidologie, 24, pp. 431-440
  • Wu, J.Y., Anelli, C.M., Sheppard, W.S., Sublethal effects of pesticide residues in brood comb on worker honeybee (Apis mellifera) development and longevity (2011) PLoS ONE, 6 (2), p. e14720. , https://doi.org/10.1371/journal.pone.0014720
  • Thompson, H.M., Levine, S.L., Doering, J., Norman, S., Manson, P., Sutton, P., Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example (2014) Integr. Environ. Assess. Manag, 10 (3), pp. 463-470. , https://doi.org/10.1002/ieam.1529
  • Palmer, K.A., Oldroyd, B.P., Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera) further support for the parasite/pathogen hypothesis for the evolution of polyandry (2003) Naturwissenschaften, 90 (6), pp. 265-268. , https://doi.org/10.1007/s00114-003-0418-3
  • Jensen, A.B., Pedersen, B.V., Eilenberg, J., Differential susceptibility across honey bee colonies in larval chalkbrood resistance (2009) Apidologie, 40 (5), pp. 524-534
  • Poquet, Y., Vidau, C., Alaux, C., Modulation of pesticide response in honeybees (2016) Apidologie, 47 (3), pp. 412-426
  • Johnson, R.M., Honey bee toxicology (2015) Annual Review of Entomology, 60
  • Simone-Finstrom, M., Walz, M., Tarpy, D.R., Genetic diversity confers colony-level benefits due to individual immunity (2016) Biology Letters, 12 (3), p. 20151007. , https://doi.org/10.1098/rsbl.2015.1007
  • Oldroyd, B.P., Fewell, J.H., Genetic diversity promotes homeostasis in insect colonies (2007) Trends Ecol. Evolut, 22 (8), pp. 408-413
  • Tarpy, D.R., Pettis, J.S., Genetic diversity affects colony survivorship in commercial honey bee colonies (2013) Naturwissenschaften, 100 (8), pp. 723-728. , https://doi.org/10.1007/s00114-013-1065-y
  • Crailsheim, K., Brodschneider, R., Aupinel, P., Behrens, D., Genersch, E., Vollmann, J., Standard methods for artificial rearing of Apis mellifera larvae (2012) J. Apicult. Res, 52 (1), pp. 1-16
  • Myser, W.C., The larval and pupal development of the honeybee Apis mellifera Linnaeus (1954) Ann. Entomol. Soc. Am, 47 (4), pp. 683-711
  • Claudianos, C., Ranson, H., Johnson, R.M., Biswas, S., Schuler, M.A., Berenbaum, M.R., A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee (2006) Insect Mol. Biol, 15 (5), pp. 615-636. , https://doi.org/10.1111/j.1365-2583.2006.00672.x
  • Mao, W., Schuler, M.A., Berenbaum, M.R., Honey constituents up-regulate detoxification and immunity genes in the western honeybee Apis mellifera (2013) P. Natl. Acad. Sci. USA, 110 (22), pp. 8842-8846
  • Johnson, R.M., Mao, W., Pollock, H.S., Niu, G., Schuler, M.A., Berenbaum, M.R., Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera (2012) PLoS ONE, 7 (2), p. e31051. , https://doi.org/10.1371/journal.pone.0031051
  • Koo, J., Son, T.G., Kim, S.Y., Lee, K.Y., Differential responses of Apis mellifera heat shock protein genes to heat shock, flower-Thinning formulations, and imidacloprid (2015) J. Asia Pac. Entomol, 18 (3), pp. 583-589
  • Decanini, L.I., Collins, A.M., Evans, J.D., Variation and heritability in immune gene expression by diseased honeybees (2007) Journal of Heredity, 98 (3), pp. 195-201. , https://doi.org/10.1093/jhered/esm008
  • Marc, J., Mulner-Lorillon, O., Belle, R., Glyphosate-based pesticides affect cell cycle regulation (2004) Biol Cell, 96 (3), pp. 245-249. , https://doi.org/10.1016/j.biolcel.2003.11.010
  • Paganelli, A., Gnazzo, V., Acosta, H., Lopez, S.L., Carrasco, A.E., Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling (2010) Chem Res Toxicol, 23 (10), pp. 1586-1595. , https://doi.org/10.1021/tx1001749
  • Gregorc, A., Ellis, J.D., Cell death localization in situ in laboratory reared honeybee (Apis mellifera L.) larvae treated with pesticides (2011) Pestic Biochem Phys, 99 (2), pp. 200-207
  • Gregorc, A., Evans, J.D., Scharf, M., Ellis, J.D., Gene expression in honeybee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor (2012) J. Insect Physiol, 58 (8), pp. 1042-1049. , https://doi.org/10.1016/j.jinsphys.2012.03.015
  • Helmer, S.H., Kerbaol, A., Aras, P., Jumarie, C., Boily, M., Effects of realistic doses of atrazine metolachlor and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera) (2015) Environmental Science and Pollution Research, 22 (11), pp. 8010-8021. , https://doi.org/10.1007/s11356-014-2879-7
  • Dai, P., Yan, Z., Ma, S., Yang, Y., Wang, Q., Hou, C., The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared vitro (2018) J. Agric. Food Chem, 66 (29), pp. 7786-7793. , https://doi.org/10.1021/acs.jafc.8b02212
  • Lagarde, F., Beausoleil, C., Belcher, S.M., Belzunces, L.P., Emond, C., Guerbet, M., Non-monotonic doseresponse relationships and endocrine disruptors: A qualitative method of assessment (2015) Environmental Health, 14 (1), p. 13
  • EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera Bombus spp (2013) And Solitary Bees). EFSA Journal, 11 (7), p. 268
  • Fukuda, H., Sakagami, S.F., Worker brood survival in honeybees (1968) Researches on Population Ecology, 10 (1), pp. 31-39
  • Huang, Z.Y., Otis, G.W., Inspection and feeding of larvae by worker honeybees (Hymenoptera: Apidae): effect of starvation and food quantity (1991) J. Insect Behav, 4 (3), pp. 305-317
  • Le Conte, Y., Sreng, L., Poitout, S.H., Brood pheromone can modulate the feeding behavior of apis mellifera workers (Hymenoptera: Apidae) (1995) J. Econ. Entomol, 88 (4), pp. 798-804
  • Wilson, R.G., Young, B.G., Matthews, J.L., Weller, S.C., Johnson, W.G., Jordan, D.L., Benchmark study on glyphosate-resistant cropping systems in the United States Part 4: Weed management practices and effects on weed populations and soil seedbanks (2011) Pest Manag Sci, 67 (7), pp. 771-780. , https://doi.org/10.1002/ps.2176
  • Medrzycki, P., Giffard, H., Aupinel, P., Belzunces, L.P., Chauzat, M.P., Claûen, C., Standard methods for toxicology research in Apis mellifera (2013) J. Apicult. Res, 52 (4), pp. 1-60
  • (2007) Environment Directorate. Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, , OECD Guidance document on the Honeybee (Apis mellifera L) brood test under semi-field conditions. Series on testing and assessment NÊ 75 (ed. Environment, Health and Safety Publications)
  • Aupinel, P., Fortini, D., Dufour, H., Tasei, J., Michaud, B., Odoux, J., Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae (2005) B. Insectol, 58 (2), pp. 107-111
  • Vandenberg, J.D., Shimanuki, H., Technique for rearing worker honeybees in the laboratory (1987) J. Apicult. Res, 26, pp. 90-97
  • Kaftanoglu, O., Linksvayer, T.A., Page, R.E., Jr., Rearing honeybees, Apis mellifera vitro I: Effects of sugar concentrations on survival and development (2011) J. Insect Sci, 11 (1), p. 96

Citas:

---------- APA ----------
Vázquez, D.E., Ilina, N., Pagano, E.A., Zavala, J.A. & Farina, W.M. (2018) . Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS ONE, 13(10).
http://dx.doi.org/10.1371/journal.pone.0205074
---------- CHICAGO ----------
Vázquez, D.E., Ilina, N., Pagano, E.A., Zavala, J.A., Farina, W.M. "Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies" . PLoS ONE 13, no. 10 (2018).
http://dx.doi.org/10.1371/journal.pone.0205074
---------- MLA ----------
Vázquez, D.E., Ilina, N., Pagano, E.A., Zavala, J.A., Farina, W.M. "Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies" . PLoS ONE, vol. 13, no. 10, 2018.
http://dx.doi.org/10.1371/journal.pone.0205074
---------- VANCOUVER ----------
Vázquez, D.E., Ilina, N., Pagano, E.A., Zavala, J.A., Farina, W.M. Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS ONE. 2018;13(10).
http://dx.doi.org/10.1371/journal.pone.0205074