Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cystic echinococcosis (CE) is a worldwide distributed helminthic zoonosis caused by Echinococcus granulosus. Benzimidazole derivatives are currently the only drugs for chemotherapeutic treatment of CE. However, their low efficacy and the adverse effects encourage the search for new therapeutic targets. We evaluated the in vitro efficacy of Bortezomib (Bz), a proteasome inhibitor, in the larval stage of the parasite. After 96 h, Bz showed potent deleterious effects at a concentration of 5 μM and 0.5 μM in protoscoleces and metacestodes, respectively (P < 0.05). After 48 h of exposure to this drug, it was triggered a mRNA overex-pression of chaperones (Eg-grp78 and Eg-calnexin) and of Eg-ire2/Eg-xbp1 (the conserved UPR pathway branch) in protoscoleces. No changes were detected in the transcriptional expression of chaperones in Bz-treated metacestodes, thus allowing ER stress to be evident and viability to highly decrease in comparison with protoscoleces. We also found that Bz treatment activated the autophagic process in both larval forms. These facts were evidenced by the increase in the amount of transcripts of the autophagy related genes (Eg-atg6, Eg-atg8, Eg-atg12, Eg-atg16) together with the increase in Eg-Atg8-II detected by western blot and by in toto immunofluorescence labeling. It was further confirmed by direct observation of autophagic structures by electronic microscopy. Finally, in order to determine the impact of autophagy induction on Echinococcus cell viability, we evaluated the efficacy of Bz in combination with rapamycin and a synergistic cytotoxic effect on protoscolex viability was observed when both drugs were used together. In conclusion, our findings demonstrated that Bz induced endoplasmic reticulum stress, autophagy and subsequent death allowing to identify unstudied parasite-host pathways that could provide a new insight for control of parasitic diseases. © 2017 Nicolao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Bortezomib initiates endoplasmic reticulum stress, elicits autophagy and death in echinococcus granulosus larval stage
Autor:Nicolao, M.C.; Loos, J.A.; Rodrigues, C.R.; Beas, V.; Cumino, A.C.
Filiación:Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel Cero, Mar del Plata, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel 2, Mar del Plata, Argentina
Hospital Privado de Comunidad, Mar del Plata, Buenos Aires, Argentina
Palabras clave:biological marker; bortezomib; chaperone; rapamycin; animal; autophagosome; autophagy; cell death; cell survival; drug effects; drug potentiation; echinococcosis; Echinococcus granulosus; endoplasmic reticulum stress; female; gene expression; genetics; larva; metabolism; mouse; parasitology; physiology; protein transport; unfolded protein response; Animals; Autophagosomes; Autophagy; Biomarkers; Bortezomib; Cell Death; Cell Survival; Drug Synergism; Echinococcosis; Echinococcus granulosus; Endoplasmic Reticulum Stress; Female; Gene Expression; Larva; Mice; Molecular Chaperones; Protein Transport; Sirolimus; Unfolded Protein Response
Año:2017
Volumen:12
Número:8
DOI: http://dx.doi.org/10.1371/journal.pone.0181528
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:bortezomib, 179324-69-7, 197730-97-5; rapamycin, 53123-88-9; Biomarkers; Bortezomib; Molecular Chaperones; Sirolimus
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v12_n8_p_Nicolao

Referencias:

  • McManus, D.P., Zhang, W., Li, J., Bartley, P.B., (2003) Echinococcosis. Lancet, 362 (9392), pp. 1295-1304. , https://doi.org/10.1016/S0140-6736(03)14573-4, PMID 14575976
  • Díaz, A., Casaravilla, C., Irigoín, F., Lin, G., Previato, J.O., Ferreira, F., Understanding the laminated layer of larval Echinococcus I: Structure (2011) Trends Parasitol, 27 (5), pp. 204-213. , https://doi.org/10.1016/j.pt.2010.12.012, PMID 21257348
  • Brunetti, E., Kern, P., Vuitton, D.A., Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans (2010) Acta Trop, 1 (114), pp. 1-16
  • Bravo, R., Parra, V., Gatica, D., Rodriguez, A.E., Torrealba, N., Paredes, F., Endoplasmic reticulum and the unfolded protein response: Dynamics and metabolic integration (2013) Int. Rev. Cell Mol. Biol, 301, pp. 215-290
  • Mori, K., Tripartite management of unfolded proteins in the endoplasmic reticulum (2000) Cell, 101 (5), pp. 451-454. , PMID 10850487
  • Nalepa, G., Rolfe, M., Harper, J.W., Drug discovery in the ubiquitin-proteasome system (2006) Nat. Rev. Drug Dis-cov, 5 (7), pp. 596-613. , https://doi.org/10.1038/nrd2056, PMID 16816840
  • Hershko, A., Ciechanover, A., The ubiquitin system (1998) Annu. Rev. Biochem., 67, pp. 425-479. , https://doi.org/10.1146/annurev.biochem.67.1.425, PMID 9759494
  • Kisselev, A.F., Callard, A., Goldberg, A.L., Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate (2006) J. Biol. Chem., 281 (13), pp. 8582-8590. , https://doi.org/10.1074/jbc.M509043200, PMID 16455650
  • Obeng, E.A., Carlson, L.M., Gutman, D.M., Harrington, W.J., Jr., Lee, K.P., Boise, L.H., Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells (2006) Blood, 107 (12), pp. 4907-4916. , https://doi.org/10.1182/blood-2005-08-3531, PMID 16507771
  • Hetz, C., Glimcher, L.H., Fine-tuning of the unfolded protein response: Assembling the IRE1-alpha interac-tome (2009) Mol. Cell, 35 (5), pp. 551-561. , https://doi.org/10.1016/j.molcel.2009.08.021, PMID 19748352
  • Verfaillie, T., Salazar, M., Velasco, G., Agostinis, P., Linking ER Stress to Autophagy: Potential Implications for Cancer Therapy (2010) Int. J. Cell Biol., p. 930509
  • Elliott, P.J., Zollner, T.M., Boehncke, W.H., Proteasome inhibition: A new anti-inflammatory strategy (2003) J. Mol. Med., 81 (4), pp. 235-245. , https://doi.org/10.1007/s00109-003-0422-2, PMID 12700891
  • Adams, J., The proteasome: A suitable antineoplastic target (2004) Nat. Rev. Cancer, 4 (5), pp. 349-360. , https://doi.org/10.1038/nrc1361, PMID 15122206
  • Adams, J., Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer (2002) Curr. Opin. Chem. Biol, 6 (4), pp. 493-500. , PMID 12133726
  • Sterz, J., Von Metzler, I., Hahne, J.C., Lamottke, B., Rademacher, J., Heider, U., Terpos, E., The potential of proteasome inhibitors in cancer therapy (2008) Expert Opin. Investig. Drugs, 17, pp. 879-895. , https://doi.org/10.1517/13543784.17.6.879, PMID 18491989
  • Reynolds, J.M., El Bissati, K., Brandenburg, J., Günzl, A., Mamoun, C.B., Antimalarial activity of the anticancer and proteasome inhibitor bortezomib and its analog ZL3B (2007) BMC Clin. Pharmacol, 7 (1), p. 13
  • Steverding, D., Wang, X., Trypanocidal activity of the proteasome inhibitor and anti-cancer drug bortezomib (2009) Parasit. Vectors, 2 (1), p. 29. , https://doi.org/10.1186/1756-3305-2-29, PMID 19583840
  • Stadelmann, B., Aeschbacher, D., Huber, C., Spiliotis, M., Müller, J., Hemphill, A., Profound activity of the anticancer drug bortezomib against echinococcus multilocularis metacestodes identifies the proteasome as a novel drug target for cestodes (2014) Plos Negl. Trop. Dis, 8 (12), p. e3352. , https://doi.org/10.1371/journal.pntd.0003352, PMID 25474446
  • Tsai, I.J., Zarowiecki, M., Holroyd, N., Garciarrubio, A., Sanchez-Flores, A., Brooks, K.L., The genomes of four tapeworm species reveal adaptations to parasitism (2013) Nature, 496, pp. 57-63. , https://doi.org/10.1038/nature12031, PMID 23485966
  • Zheng, H., Zhang, W., Zhang, L., Zhang, Z., Li, J., Lu, G., The genome of the hydatid tapeworm Echinococcus granulosus (2013) Nat. Genet, 45, pp. 1168-1175. , https://doi.org/10.1038/ng.2757, PMID 24013640
  • Lee, A.S., The glucose-regulated proteins: Stress induction and clinical applications (2001) Trends Biochem. Sci, 26 (8), pp. 504-510. , PMID 11504627
  • Lee, A.S., Glucose-regulated proteins in cancer: Molecular mechanisms and therapeutic potential (2014) Nat. Rev. Cancer, 14 (4), pp. 263-276. , https://doi.org/10.1038/nrc3701, PMID 24658275
  • Mühlschlegel, F., Frosch, P., Castro, A., Apfel, H., Müller, A., Frosch, M., Molecular cloning and characterization of an Echinococcus multilocularis and Echinococcus granulosus stress protein homologous to the mammalian 78 kDa glucose regulated protein (1995) Mol. Biochem. Parasitol., 74 (2), pp. 245-250. , PMID 8719168
  • Kohno, K., Normington, K., Sambrook, J., Gething, M.J., Mori, K., The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum (1993) Mol. Cell. Biol., 13 (2), pp. 877-890. , PMID 8423809
  • Cox, J.S., Shamu, C.E., Walter, P., Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase (1993) Cell, 73 (6), pp. 1197-1206. , PMID 8513503
  • Rodan, A.R., Simons, J.F., Trombetta, E.S., Helenius, A., N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin (1996) EMBO J, 15, pp. 6921-6930. , PMID 9003768
  • Cumino, A.C., Lamenza, P., Denegri, G.M., Identification of functional FKB protein in Echinococcus granulosus: Its involvement in the protoscolicidal action of rapamycin derivates and in calcium homeostasis (2010) Int. J. Parasitol, 40 (6), pp. 651-661. , https://doi.org/10.1016/j.ijpara.2009.11.011, PMID 20005877
  • Loos, J.A., Caparros, P.A., Nicolao, M.C., Denegri, G.M., Cumino, A.C., Identification and pharmacological induction of autophagy in the larval stages of Echinococcus granulosus: An active catabolic process in calcareous corpuscles (2014) Int. J. Parasitol, 44 (7), pp. 415-427. , https://doi.org/10.1016/j.ijpara.2014.02.007, PMID 24703869
  • Korolchuk, V.I., Menzies, F.M., Rubinsztein, D.C., Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems (2010) FEBS Lett, 584 (7), pp. 1393-1398. , https://doi.org/10.1016/j.febslet.2009.12.047, PMID 20040365
  • Nicolao, M.C., Elissondo, M.C., Denegri, G.M., Goya, A.B., Cumino, A.C., In vitro and in vivo effects of tamoxifen against larval stage Echinococcus granulosus (2014) Antimicrob. Agents Chemother, 58 (9), pp. 5146-5154. , https://doi.org/10.1128/AAC.02113-13, PMID 24936598
  • Doolittle, R.F., The multiplicity of domains in proteins (1995) Ann. Rev. Biochem., 64 (1), pp. 287-314
  • Tatusov, R.L., Koonin, E.V., Lipman, D.J., A genomic perspective on protein families (1997) Science, 278 (5338), pp. 631-637. , PMID 9381173
  • Cumino, A.C., Elissondo, M.C., Denegri, G.M., Flubendazole interferes with a wide spectrum of cell homeostatic mechanisms in Echinococcus granulosus protoscoleces (2009) Parasit. Int, 58 (3), pp. 270-277
  • Cabezón, C., Cabrera, G., Paredes, R., Ferreira, A., Galanti, N., Echinococcus granulosus calreticulin: Molecular characterization and hydatid cyst localization (2008) Mol. Immunol, 45 (5), pp. 1431-1438. , https://doi.org/10.1016/j.molimm.2007.08.022, PMID 17936905
  • Nakatogawa, H., Ichimura, Y., Ohsumi, Y., Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion (2007) Cell, 130 (1), pp. 165-178. , https://doi.org/10.1016/j.cell.2007.05.021, PMID 17632063
  • Gottstein, B., Hemphill, A., Immunopathology of echinococcosis (1997) Chem. Immunol, 66, pp. 177-208. , PMID 9103670
  • Zhang, W.B., Jones, M.K., Li, J., McManus, D.P., Echinococcus granulosus: Pre-culture of protoscoleces in vitro significantly increases development and viability of secondary hydatid cysts in mice (2005) Exp. Parasitol, 110 (1), pp. 88-90. , https://doi.org/10.1016/j.exppara.2005.02.003, PMID 15804383
  • Hemphill, A., Stadelmann, B., Rufener, R., Spiliotis, M., Boubaker, G., Müller, J., Treatment of echinococcosis: Albendazole and mebendazole–what else? (2014) Parasite, 21. , https://doi.org/10.1051/parasite/2014073, PMID 25526545
  • De Diego, J.L., Katz, J.M., Marshall, P., Gutiérrez, B., Manning, J.E., Nussenzweig, V., The ubiquitin-proteasome pathway plays an essential role in proteolysis during Trypanosoma cruzi remodeling (2001) Biochemistry, 40 (4), pp. 1053-1062. , PMID 11170428
  • Makioka, A., Kumagai, M., Ohtomo, H., Kobayashi, S., Takeuchi, T., Effect of proteasome inhibitors on the growth, encystation, and excystation of Entamoeba histolytica and Entamoeba invadens (2002) Parasitol. Res, 88 (5), pp. 454-459. , PMID 12049464
  • Yang, W., Li, L.G., Liu, R.D., Sun, G.G., Liu, C.Y., Zhang, S.B., Molecular identification and characterization of Trichinella spiralis proteasome subunit beta type-7 (2015) Parasit. Vectors, 8 (1), p. 1. , https://doi.org/10.1186/s13071-014-0626-z, PMID 25582125
  • Mori, K., Signalling pathways in the unfolded protein response: Development from yeast to mammals (2009) J. Biochem, 146 (6), pp. 743-750. , https://doi.org/10.1093/jb/mvp166, PMID 19861400
  • Hollien, J., Evolution of the unfolded protein response (2013) Biochim. Biophys. Acta, 1833 (11), pp. 2458-2463. , https://doi.org/10.1016/j.bbamcr.2013.01.016, PMID 23369734
  • Dolai, S., Adak, S., Endoplasmic reticulum stress responses in Leishmania (2014) Mol. Biochem. Parasitol., 197 (1-2), pp. 1-8. , https://doi.org/10.1016/j.molbiopara.2014.09.002, PMID 25224909
  • Shaffer, A.L., Shapiro-Shelef, M., Iwakoshi, N.N., Lee, A.H., Qian, S.B., Zhao, H., XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation (2004) Immunity, 21 (1), pp. 81-93. , https://doi.org/10.1016/j.immuni.2004.06.010, PMID 15345222
  • Sriburi, R., Jackowski, S., Mori, K., Brewer, J.W., XBP1 a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum (2004) J.cell Biol, 167 (1), pp. 35-41. , https://doi.org/10.1083/jcb.200406136, PMID 15466483
  • Nicolao, M.C., Cumino, A.C., Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages (2015) Acta Trop, 146, pp. 141-151. , https://doi.org/10.1016/j.actatropica.2015.03.016, PMID 25818323
  • Hetz, C., The unfolded protein response: Controlling cell fate decisions under ER stress and beyond (2012) Nat. Rev. Mol. Cell Biol, 13 (2), pp. 89-102. , https://doi.org/10.1038/nrm3270, PMID 22251901
  • Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J., Sambrook, J., The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins (1988) Nature, 332, pp. 462-464. , https://doi.org/10.1038/332462a0, PMID 3352747
  • Patil, C., Walter, P., Intracellular signaling from the endoplasmic reticulum to the nucleus: The unfolded protein response in yeast and mammals (2001) Curr. Opin. Cell Biol, 13 (3), pp. 349-355. , PMID 11343907
  • Kaushik, S., Cuervo, A.M., Autophagy as a cell-repair mechanism: Activation of chaperone-mediated autophagy during oxidative stress (2006) Mol. Aspects Med, 27 (5), pp. 444-454
  • Li, J., Ni, M., Lee, B., Barron, E., Hinton, D.R., Lee, A.S., The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells (2008) Cell Death Differ, 15 (9), pp. 1460-1471. , https://doi.org/10.1038/cdd.2008.81, PMID 18551133
  • Cui, S.J., Xu, L.L., Zhang, T., Xu, M., Yao, J., Fang, C.Y., Proteomic characterization of larval and adult developmental stages in Echinococcus granulosus reveals novel insight into host–parasite interactions (2013) J. Proteom, 84, pp. 158-175
  • Levi-Ferber, M., Salzberg, Y., Safra, M., Haviv-Chesner, A., Bülow, H.E., Henis-Korenblit, S., It’s all in your mind: Determining germ cell fate by neuronal IRE-1 in C. Elegans (2014) Plos Genet, 10 (10), p. e1004747. , https://doi.org/10.1371/journal.pgen.1004747, PMID 25340700
  • Chen, Y., Brandizzi, F., IRE1: ER stress sensor and cell fate executor (2013) Trends Cell Biol, 23 (11), pp. 547-555. , https://doi.org/10.1016/j.tcb.2013.06.005, PMID 23880584
  • Klionsky, D.J., Abeliovich, H., Agostinis, P., Agrawal, D.K., Aliev, G., Askew, D.S., Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes (2008) Autophagy, 4, pp. 151-175. , https://doi.org/10.4161/auto.5338, PMID 18188003
  • Periyasamy-Thandavan, S., Jackson, W.H., Samaddar, J.S., Erickson, B., Barrett, J.R., Raney, L., Bortezomib blocks the catabolic process of autophagy via a cathepsin-dependent mechanism, affects endoplasmic reticulum stress, and induces caspase-dependent cell death in antiestrogen–sensitive and resistant ER+ breast cancer cells (2010) Autophagy, 6 (1), pp. 19-35. , PMID 20110775
  • Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing (2000) EMBO J, 19 (21), pp. 5720-5728. , https://doi.org/10.1093/emboj/19.21.5720, PMID 11060023
  • Shintani, T., Klionsky, D.J., Autophagy in health and disease: A double-edged sword (2004) Science, 306 (5698), pp. 990-995. , https://doi.org/10.1126/science.1099993, PMID 15528435
  • Abdel-Malek, M.A.Y., Jagannathan, S., Malek, E., Sayed, D.M., Elgammal, S.A., El-Azeem, H.G., Molecular chaperone GRP78 enhances aggresome delivery to autophagosomes to promote drug resistance in multiple myeloma (2015) Oncotarget, 6 (5), pp. 3098-3110. , https://doi.org/10.18632/oncotarget.3075, PMID 25605012
  • Jagannathan, S., Abdel-Malek, M.A., Malek, E., Vad, N., Latif, T., Anderson, K.C., Driscoll, J.J., Pharmacologic screens reveal metformin that suppresses GRP78-dependent autophagy to enhance the anti-myeloma effect of bortezomib (2015) Leukemia, 29 (11), pp. 2184-2191. , https://doi.org/10.1038/leu.2015.157, PMID 26108695
  • Levine, B., Kroemer, G., Autophagy in the pathogenesis of disease (2008) Cell, 132 (1), pp. 27-42. , https://doi.org/10.1016/j.cell.2007.12.018, PMID 18191218
  • Ogata, M., Hino, S.I., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Autophagy is activated for cell survival after endoplasmic reticulum stress (2006) Mol. Cell. Biol., 26 (24), pp. 9220-9231. , https://doi.org/10.1128/MCB.01453-06, PMID 17030611
  • Kouroku, Y., Fujita, E., Tanida, I., Ueno, T., Isoai, A., Kumagai, H., ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation (2007) Cell Death Differ, 14 (2), pp. 230-239. , https://doi.org/10.1038/sj.cdd.4401984, PMID 16794605
  • Li, D.D., Wang, L.L., Deng, R., Tang, J., Shen, Y., Guo, J.F., The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells (2009) Oncogene, 28 (6), pp. 886-898. , https://doi.org/10.1038/onc.2008.441, PMID 19060920
  • Pattingre, S., Bauvy, C., Carpentier, S., Levade, T., Levine, B., Codogno, P., Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy (2009) J. Biol. Chem., 284 (5), pp. 2719-2728. , https://doi.org/10.1074/jbc.M805920200, PMID 19029119
  • Granato, M., Santarelli, R., Lotti, L.V., Di Renzo, L., Gonnella, R., Garufi, A., JNK and macroautophagy activation by bortezomib has a pro-survival effect in primary effusion lymphoma cells (2013) Plos One, 8 (9), p. e75965. , https://doi.org/10.1371/journal.pone.0075965, PMID 24086672
  • Zhang, X.Y., Zhang, T.T., Song, D.D., Zhou, J.H., Han, R., Qin, Z.H., Endoplasmic reticulum chaperone GRP78 is involved in autophagy activation induced by ischemic preconditioning in neural cells (2015) Mol. Brain, 8 (1), p. 20. , https://doi.org/10.1186/s13041-015-0112-3, PMID 25885223
  • Wu, W.K., Cho, C.H., Lee, C.W., Wu, Y.C., Yu, L., Li, Z.J., Macroautophagy and ERK phosphorylation counteract the anti-proliferative effect of proteasome inhibitor in gastric cancer cells (2010) Autophagy, 6 (2), pp. 228-238. , PMID 20087064
  • Caballero-Velázquez, T., Sánchez-Abarca, L.I., Gutierrez-Cosio, S., Blanco, B., Calderon, C., Herrero, C., The novel combination of sirolimus and bortezomib prevents graft-versus-host disease but maintains the graft-versus-leukemia effect after allogeneic transplantation (2012) Haematologica, 97 (9), pp. 1329-1337. , https://doi.org/10.3324/haematol.2011.058677, PMID 22532520
  • Schrag, J.D., Bergeron, J.J., Li, Y., Borisova, S., Hahn, M., Thomas, D.Y., The structure of calnexin, an ER chaperone involved in quality control of protein folding (2001) Mol. Cell, 8 (3), pp. 633-644. , PMID 11583625
  • Nakamura, K., Zuppini, A., Arnaudeau, S., Lynch, J., Ahsan, I., Krause, R., Functional specialization of calreticulin domains (2001) J. Cell Biol., 154 (5), pp. 961-972. , https://doi.org/10.1083/jcb.200102073, PMID 11524434
  • Zhou, J., Liu, C.Y., Back, S.H., Clark, R.L., Peisach, D., Xu, Z., The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response (2006) Proc. Nat. Acad. Sci., 103 (39), pp. 14343-14348. , https://doi.org/10.1073/pnas.0606480103, PMID 16973740
  • Lee, K.P., Dey, M., Neculai, D., Cao, C., Dever, T.E., Sicheri, F., Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing (2008) Cell, 132 (1), pp. 89-100. , https://doi.org/10.1016/j.cell.2007.10.057, PMID 18191223

Citas:

---------- APA ----------
Nicolao, M.C., Loos, J.A., Rodrigues, C.R., Beas, V. & Cumino, A.C. (2017) . Bortezomib initiates endoplasmic reticulum stress, elicits autophagy and death in echinococcus granulosus larval stage. PLoS ONE, 12(8).
http://dx.doi.org/10.1371/journal.pone.0181528
---------- CHICAGO ----------
Nicolao, M.C., Loos, J.A., Rodrigues, C.R., Beas, V., Cumino, A.C. "Bortezomib initiates endoplasmic reticulum stress, elicits autophagy and death in echinococcus granulosus larval stage" . PLoS ONE 12, no. 8 (2017).
http://dx.doi.org/10.1371/journal.pone.0181528
---------- MLA ----------
Nicolao, M.C., Loos, J.A., Rodrigues, C.R., Beas, V., Cumino, A.C. "Bortezomib initiates endoplasmic reticulum stress, elicits autophagy and death in echinococcus granulosus larval stage" . PLoS ONE, vol. 12, no. 8, 2017.
http://dx.doi.org/10.1371/journal.pone.0181528
---------- VANCOUVER ----------
Nicolao, M.C., Loos, J.A., Rodrigues, C.R., Beas, V., Cumino, A.C. Bortezomib initiates endoplasmic reticulum stress, elicits autophagy and death in echinococcus granulosus larval stage. PLoS ONE. 2017;12(8).
http://dx.doi.org/10.1371/journal.pone.0181528