Artículo

Toscani, A.M.; Sampayo, R.G.; Barabas, F.M.; Fuentes, F.; Simian, M.; Leskow, F.C."Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models" (2017) PLoS ONE. 12(3)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

ERBB2 is a member of the ERBB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ERBB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ERBB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ERBB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ERBB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ERBB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ERBB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ERBB2: a major population located in large clusters and a minor population outside these structures. Upon ERBB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ERBB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ERBB2 and beta1 integrin activity in breast cancer cells. © 2017 Toscani et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models
Autor:Toscani, A.M.; Sampayo, R.G.; Barabas, F.M.; Fuentes, F.; Simian, M.; Leskow, F.C.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
Universidad de Buenos Aires, Área Investigación, Instituto de Oncología Angel H. Roffo, Buenos Aires, Argentina
Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad de Buenos Aires, C1425FQD, Argentina
Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
Instituto de Nanosistemas and CEDSI, Universidad Nacional de San Martín, Campus Miguelete, San Martin, Buenos Aires, Argentina
Palabras clave:beta1 integrin; epidermal growth factor receptor 2; CD18 antigen; epidermal growth factor receptor 2; ERBB2 protein, human; Article; breast cancer cell line; cell adhesion; cell compartmentalization; cell membrane; confocal microscopy; enzyme localization; extracellular matrix; HeLa cell line; human; human cell; immunofluorescence; MCF-7 cell line; molecular imaging; protein analysis; protein expression; protein function; protein interaction; protein localization; protein structure; sequence analysis; SKBR3 cell line; T47D cell line; Western blotting; breast tumor; metabolism; pathology; tumor cell line; Breast Neoplasms; CD18 Antigens; Cell Line, Tumor; Humans; Receptor, ErbB-2
Año:2017
Volumen:12
Número:3
DOI: http://dx.doi.org/10.1371/journal.pone.0174230
Handle:http://hdl.handle.net/20.500.12110/paper_19326203_v12_n3_p_Toscani
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:epidermal growth factor receptor 2, 137632-09-8; CD18 antigen, 172592-43-7; CD18 Antigens; ERBB2 protein, human; Receptor, ErbB-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v12_n3_p_Toscani

Referencias:

  • Roskoski, R., The ERBB/HER family of protein-Tyrosine kinases and cancer (2014) Pharmacol Res., 79, pp. 34-74. , https://doi.org/10.1016/j.phrs.2013.11.002, PMID: 24269963
  • Yarden, Y., Pines, G., The ERBB network: At last cancer therapy meets systems biology (2012) Nat Rev Cancer, 12, pp. 553-563. , https://doi.org/10.1038/nrc3309, Nature Publishing Group a division of Macmillan Publishers Limited. All Rights Reserved.; PMID: 22785351
  • Holbro, T., Hynes, N.E., ERBB receptors: Directing key signaling networks throughout life (2004) Annu Rev Pharmacol Toxicol., 44, pp. 195-217. , https://doi.org/10.1146/annurev.pharmtox.44.101802.121440, PMID: 14744244
  • Olayioye, M.A., Neve, R.M., Lane, H.A., Hynes, N.E., The ERBB signaling network: Receptor heterodimerization in development and cancer (2000) EMBO J., 19, pp. 3159-3167. , https://doi.org/10.1093/emboj/19.13.3159, PMID: 10880430
  • Arteaga, C.L., Engelman, J.A., ERBB receptors: From oncogene discovery to basic science to mechanism-based cancer therapeutics (2014) Cancer Cell, 25, pp. 282-303. , https://doi.org/10.1016/j.ccr.2014.02.025, Elsevier Inc.; PMID: 24651011
  • Nagy, P., Claus, J., Jovin, T.M., Arndt-Jovin, D.J., Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis (2010) Proceedings of the National Academy of Sciences USA., 107, pp. 16524-16529
  • Szabó, A., Horváth, G., Szöllosi, J., Nagy, P., Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements (2008) Biophys J., 95, pp. 2086-2096. , https://doi.org/10.1529/biophysj.108.133371, PMID: 18487307
  • Hynes, N.E., Lane, H.A., ERBB receptors and cancer: The complexity of targeted inhibitors (2005) Nat Rev Cancer., 5, pp. 341-354. , https://doi.org/10.1038/nrc1609, PMID: 15864276
  • Iqbal, N., Iqbal, N., Human epidermal growth factor receptor 2 (HER2) in Cancers: Overexpression and therapeutic implications (2014) Mol Biol Int., 2014, pp. 1-9
  • Goddard, K.A.B., Weinmann, S., Richert-Boe, K., Chen, C., Bulkley, J., Wax, C., HER2 evaluation and its impact on breast cancer treatment decisions (2011) Public Health Genomics., 15, pp. 1-10. , https://doi.org/10.1159/000325746, PMID: 21540562
  • Carter, P., Presta, L., Gorman, C.M., Ridgway, J.B., Henner, D., Wong, W.L., Humanization of an antip185HER2 antibody for human cancer therapy (1992) Proceedings of the National Academy of Sciences USA., 89, pp. 4285-4289
  • Nahta, R., Esteva, F.J., HER2 therapy: Molecular mechanisms of trastuzumab resistance (2006) Breast Cancer Res., 8, p. 215. , https://doi.org/10.1186/bcr1612, PMID: 17096862
  • Vu, T., Claret, F.X., Trastuzumab: Updated mechanisms of action and resistance in breast cancer (2012) Front Oncol., 2, pp. 1-6
  • Chung, A., Cui, X., Audeh, W., Giuliano, A., Current status of anti-human epidermal growth factor receptor 2 therapies: Predicting and overcoming herceptin resistance (2013) Clin Breast Cancer., 13, pp. 223-232. , https://doi.org/10.1016/j.clbc.2013.04.001, PMID: 23829888
  • Kuramochi, Y., Guo, X., Sawyer, D.B., Neuregulin activates erbB2-dependent src/FAK signaling and cytoskeletal remodeling in isolated adult rat cardiac myocytes (2006) J Mol Cell Cardiol., 41, pp. 228-235. , https://doi.org/10.1016/j.yjmcc.2006.04.007, PMID: 16769082
  • Cabodi, S., Tinnirello, A., Di Stefano, P., Bisar, B., Ambrosino, E., Castellano, I., P130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-Neu oncogene-dependent breast tumorigenesis (2006) Cancer Res., 66, pp. 4672-4680. , https://doi.org/10.1158/0008-5472.CAN-05-2909, PMID: 16651418
  • Cabodi, S., Tinnirello, A., Bisaro, B., Tornillo, G., Del Pilar Camacho-Leal, M., Forni, G., P130Cas is an essential transducer element in ErbB2 transformation (2010) FASEB J., 24, pp. 3796-3808. , https://doi.org/10.1096/fj.10-157347, PMID: 20505116
  • Lesniak, D., Xu, Y., Deschenes, J., Lai, R., Thoms, J., Murray, D., 1-integrin circumvents the antiproliferative effects of trastuzumab in human epidermal growth factor receptor-2-positive breast cancer (2009) Cancer Res., 69, pp. 8620-8628. , https://doi.org/10.1158/0008-5472.CAN-09-1591, PMID: 19887601
  • Soung, Y.H., Clifford, J.L., Chung, J., Crosstalk between integrin and receptor tyrosine kinase signaling in breast carcinoma progression (2010) BMB Rep., 43, pp. 311-318. , PMID: 20510013
  • Xu, M., Bower, K.A., Chen, G., Shi, X., Dong, Z., Ke, Z., Ethanol enhances the interaction of breast cancer cells over-expressing erbB2 with fibronectin (2010) Alcohol Clin Exp Res., 34, pp. 751-760. , https://doi.org/10.1111/j.1530-0277.2010.01147.x, PMID: 20201928
  • Boivin, B., Chaudhary, F., Dickinson, B.C., Haque, A., Pero, S.C., Chang, C.J., Receptor protein-Tyrosine phosphatase alpha regulates focal adhesion kinase phosphorylation and ErbB2 oncoprotein-mediated mammary epithelial cell motility (2013) J Biol Chem., 288, pp. 36926-36935. , https://doi.org/10.1074/jbc.M113.527564, PMID: 24217252
  • Campbell, I.D., Humphries, M.J., Integrin structure, activation, and interactions (2011) Cold Spring Harb Perspect Biol., 3, pp. 1-14
  • Romer, L.H., Birukov, K.G., Garcia, J.G.N., Focal adhesions: Paradigm for a signaling nexus (2006) Circ Res., 98, pp. 606-616. , https://doi.org/10.1161/01.RES.0000207408.31270.db, PMID: 16543511
  • Calderwood, D.A., Integrin activation (2004) J Cell Sci., 117, pp. 657-666. , https://doi.org/10.1242/jcs.01014, PMID: 14754902
  • Harburger, D.S., Calderwood, D.A., Integrin signalling at a glance (2009) J Cell Sci., 122, pp. 159-163. , https://doi.org/10.1242/jcs.018093, PMID: 19118207
  • Brakebusch, C., Hirsch, E., Potocnik, A., Fassler, R., Genetic analysis of beta1 integrin function: Confirmed, new and revised roles for a crucial family of cell adhesion molecules (1997) J Cell Sci., 110, pp. 2895-2904
  • Boudreau, N.J., Jones, P.L., Extracellular matrix and integrin signalling: The shape of things to come (1999) Biochem J., 339, pp. 481-488
  • Streuli, C.H., Integrins and cell-fate determination (2009) J Cell Sci., 122, pp. 171-177. , https://doi.org/10.1242/jcs.018945, PMID: 19118209
  • Shimizu, H., Koyama, N., Asada, M., Yoshimatsu, K., Aberrant expression of integrin and ERBB subunits in breast cancer cell lines (2002) Int J Oncol., 21, pp. 1073-1079. , Spandidos Publications; PMID: 12370757
  • Huck, L., Pontier, S.M., Zuo, D.M., Muller, W.J., Beta1-integrin is dispensable for the induction of ErbB2 mammary tumors but plays a critical role in the metastatic phase of tumor progression (2010) Proceedings of the National Academy of Sciences USA., 107, pp. 15559-15564
  • Lesniak, D., Sabri, S., Xu, Y., Thoms, J., Deschenes, J., Mackey, J., Beta1 integrin: A novel predictive biomarker and a target in HER-2-overexpressing trastuzumab resistant women with breast cancer (2008) Cancer Res., 68, p. 5826
  • Falcioni, R., Antonini, A., Nisticò, P., Di Stefano, S., Crescenzi, M., Natali, P.G., Alpha 6 beta 4 and alpha 6 beta1 integrins associate with ERBB-2 in human carcinoma cell lines (1997) Exp Cell Res., 236, pp. 76-85. , PMID: 9344587
  • Wang, S.E., Xiang, B., Zent, R., Quaranta, V., Pozzi, A., Arteaga, C.L., Transforming growth factor beta induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton (2009) Cancer Res., 69, pp. 475-482. , https://doi.org/10.1158/0008-5472.CAN-08-2649, PMID: 19147560
  • Mocanu, M.-M., Fazekas, Z., Petrás, M., Nagy, P., Sebestyén, Z., Isola, J., Associations of ErbB2, beta1-integrin and lipid rafts on Herceptin (trastuzumab) resistant and sensitive tumor cell lines (2005) Cancer Lett., 227, pp. 201-212. , https://doi.org/10.1016/j.canlet.2005.01.028, PMID: 16112423
  • Fazekas, Z., Petrás, M., Fábián, A., Pályi-Krekk, Z., Nagy, P., Damjanovich, S., Two-sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy (2008) Cytometry A., 73, pp. 209-219. , https://doi.org/10.1002/cyto.a.20489, PMID: 18044751
  • Pike, L.J., Lipid rafts: Bringing order to chaos (2003) J Lipid Res., 44, pp. 655-667. , https://doi.org/10.1194/jlr.R200021-JLR200, PMID: 12562849
  • Owen, D.M., Magenau, A., Williamson, D., Gaus, K., The lipid raft hypothesis revisited-new insights on raft composition and function from super-resolution fluorescence microscopy (2012) BioEssays., 34, pp. 739-747. , https://doi.org/10.1002/bies.201200044, PMID: 22696155
  • Patra, S.K., Dissecting lipid raft facilitated cell signaling pathways in cancer (2008) Biochim Biophys Acta., 1785, pp. 182-206. , https://doi.org/10.1016/j.bbcan.2007.11.002, PMID: 18166162
  • Simons, K., Toomre, D., Lipid rafts and signal transduction (2000) Nat Rev Mol Cell Biol., 1, pp. 31-39. , https://doi.org/10.1038/35036052, PMID: 11413487
  • Peres, C., Yart, A., Perret, B., Salles, J.P., Raynal, P., Modulation of phosphoinositide 3-kinase activation by cholesterol level suggests a novel positive role for lipid rafts in lysophosphatidic acid signalling (2003) FEBS Lett., 534, pp. 164-168. , PMID: 12527380
  • Nagy, P., Vereb, G., Sebestyén, Z., Horváth, G., Lockett, S.J., Damjanovich, S., Lipid rafts and the local density of ERBB proteins influence the biological role of homo-And heteroassociations of ERBB2 (2002) J Cell Sci., 115, pp. 4251-4262. , PMID: 12376557
  • De Laurentiis, A., Donovan, L., Arcaro, A., Lipid rafts and caveolae in signaling by growth factor receptors (2007) Open Biochem J., 1, pp. 12-32. , https://doi.org/10.2174/1874091X00701010012, PMID: 18949068
  • Irwin, M.E., Mueller, K.L., Bohin, N., Ge, Y., Boerner, J.L., Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib (2011) J Cell Physiol., 226, pp. 2316-2328. , https://doi.org/10.1002/jcp.22570, PMID: 21660955
  • Sottocornola, E., Misasi, R., Mattei, V., Ciarlo, L., Gradini, R., Garofalo, T., Role of gangliosides in the association of ErbB2 with lipid rafts in mammary epithelial HC11 cells (2006) FEBS J., 273, pp. 1821-1830. , https://doi.org/10.1111/j.1742-4658.2006.05203.x, PMID: 16623716
  • Del Pozo, M.A., Integrin signaling and lipid rafts (2004) Cell Cycle., 3, pp. 725-728. , PMID: 15197344
  • Del Pozo, M.A., Alderson, N.B., Kiosses, W.B., Chiang, H.-H., Anderson, R.G.W., Schwartz, M.A., Integrins regulate Rac targeting by internalization of membrane domains (2004) Science., 303, pp. 839-842. , https://doi.org/10.1126/science.1092571, PMID: 14764880
  • Pankov, R., Markovska, T., Hazarosova, R., Antonov, P., Ivanova, L., Momchilova, A., Cholesterol distribution in plasma membranes of beta1 integrin-expressing and beta1 integrin-deficient fibroblasts (2005) Arch Biochem Biophys., 442, pp. 160-168. , https://doi.org/10.1016/j.abb.2005.08.003, PMID: 16165083
  • Parsons, M., Messent, A.J., Humphries, J.D., Deakin, N.O., Humphries, M.J., Quantification of integrin receptor agonism by fluorescence lifetime imaging (2008) J Cell Sci., 121, pp. 265-271. , https://doi.org/10.1242/jcs.018440, PMID: 18216331
  • Naipauer, J., Gattelli, A., Degese, M.S., Slomiansky, V., Wertheimer, E., LaMarre, J., The use of alternative polyadenylation sites renders integrin β1 (Itgb1) mRNA isoforms with differential stability during mammary gland development (2013) Biochem J., 454, pp. 345-357. , https://doi.org/10.1042/BJ20130062, PMID: 23789592
  • Villalta, J.I., Galli, S., Iacaruso, M.F., Arciuch, V.G.A., Poderoso, J.J., Jares-Erijman, E.A., New algorithm to determine true colocalization in combination with image restoration and time-lapse confocal microscopy to map Kinases in mitochondria (2011) PLoS One., 6, pp. 1-16
  • Costes S, V., Daelemans, D., Cho, E.H., Dobbin, Z., Pavlakis, G., Lockett, S., Automatic and quantitative measurement of protein-protein colocalization in live cells (2004) Biophys J, 86, pp. 3993-4003. , https://doi.org/10.1529/biophysj.103.038422, Elsevier. PMID: 15189895
  • Holden, S.J., Uphoff, S., Kapanidis, A.N., DAOSTORM: An algorithm for high-density super-resolution microscopy (2011) Nat Methods., 8, pp. 279-280. , https://doi.org/10.1038/nmeth0411-279, Nature Publishing Group; PMID: 21451515
  • Rust, M.J., Bates, M., Zhuang, X., (2006) STORM. Nat Meth., 3, pp. 793-796
  • Ciriello, G., Gatza, M.L., Beck, A.H., Wilkerson, M.D., Rhie, S.K., Pastore, A., Comprehensive molecular portraits of invasive lobular breast cancer (2015) Cell., 163, pp. 506-519. , https://doi.org/10.1016/j.cell.2015.09.033, PMID: 26451490
  • Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data (2012) Cancer Discov., 2
  • Taherian, A., Li, X., Liu, Y., Haas, T.A., Differences in integrin expression and signaling within human breast cancer cells (2011) BMC Cancer., 11, p. 293. , https://doi.org/10.1186/1471-2407-11-293, BioMed Central Ltd; PMID: 21752268
  • Janik, M.E., Litynska, A., Vereecken, P., Cell migration-The role of integrin glycosylation (2010) Biochim Biophys Acta-Gen Subj., 1800, pp. 545-555
  • Bellis, S.L., Variant glycosylation: An underappreciated regulatory mechanism for beta1 integrins (2004) Biochim Biophys Acta-Biomembr., 1663, pp. 52-60
  • Humphries, J.D., Byron, A., Humphries, M.J., Integrin ligands at a glance (2006) J Cell Sci., 119, pp. 3901-3903. , https://doi.org/10.1242/jcs.03098, PMID: 16988024
  • Kim, L.T., Ishihara, S., Lee, C.C., Akiyama, S.K., Yamada, K.M., Grinnell, F., Altered glycosylation and cell surface expression of beta1 integrin receptors during keratinocyte activation (1992) J Cell Sci., 103, pp. 743-753
  • Von Lampe, B., Stallmach, A., Riecken, E.O., Altered glycosylation of integrin adhesion molecules in colorectal cancer cells and decreased adhesion to the extracellular matrix (1993) Gut., 34, pp. 829-836. , PMID: 8314518
  • Kennecke, H., Yerushalmi, R., Woods, R., Chon, M., Cheang, U., Voduc, D., Metastatic behavior of breast cancer subtypes (2010) J Clin Oncol., 28, pp. 3271-3277. , https://doi.org/10.1200/JCO.2009.25.9820, PMID: 20498394
  • Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., McGuire, W.L., Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene (1987) Science., 235, pp. 177-182. , PMID: 3798106
  • Steinkamp, M.P., Low-Nam, S.T., Yang, S., Lidke, K.A., Lidke, D.S., Wilson, B.S., ErbB3 is an active tyrosine kinase capable of homo-And heterointeractions (2014) Mol Cell Biol., 34, pp. 965-977. , https://doi.org/10.1128/MCB.01605-13, PMID: 24379439
  • Nisticò, P., Di Modugno, F., Spada, S., Bissell, M.J., β1 and β4 integrins: From breast development to clinical practice (2014) Breast Cancer Res., 16, p. 459. , https://doi.org/10.1186/s13058-014-0459-x, PMID: 25606594
  • Lahlou, H., Sanguin-Gendreau, V., Frame, M.C., Muller, W.J., Focal adhesion kinase contributes to proliferative potential of ErbB2 mammary tumour cells but is dispensable for ErbB2 mammary tumour induction in vivo (2012) Breast Cancer Res., 14, p. R36. , https://doi.org/10.1186/bcr3131, PMID: 22373082
  • Guan, J., Cell biology. Integrins, rafts, Rac, and Rho (2004) Science., 303, pp. 773-774. , https://doi.org/10.1126/science.1094376, PMID: 14764856
  • Pontier, S.M., Huck, L., White, D.E., Rayment, J., Sanguin-Gendreau, V., Hennessy, B., Integrin-linked kinase has a critical role in ErbB2 mammary tumor progression: Implications for human breast cancer (2010) Oncogene., 29, pp. 3374-3385. , https://doi.org/10.1038/onc.2010.86, Nature Publishing Group; PMID: 20305688
  • Yao, E.S., Zhang, H., Chen, Y.-Y., Lee, B., Chew, K., Moore, D., Increased 1 integrin is associated with decreased survival in invasive breast cancer (2007) Cancer Res., 67, pp. 659-664. , https://doi.org/10.1158/0008-5472.CAN-06-2768, PMID: 17234776

Citas:

---------- APA ----------
Toscani, A.M., Sampayo, R.G., Barabas, F.M., Fuentes, F., Simian, M. & Leskow, F.C. (2017) . Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models. PLoS ONE, 12(3).
http://dx.doi.org/10.1371/journal.pone.0174230
---------- CHICAGO ----------
Toscani, A.M., Sampayo, R.G., Barabas, F.M., Fuentes, F., Simian, M., Leskow, F.C. "Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models" . PLoS ONE 12, no. 3 (2017).
http://dx.doi.org/10.1371/journal.pone.0174230
---------- MLA ----------
Toscani, A.M., Sampayo, R.G., Barabas, F.M., Fuentes, F., Simian, M., Leskow, F.C. "Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models" . PLoS ONE, vol. 12, no. 3, 2017.
http://dx.doi.org/10.1371/journal.pone.0174230
---------- VANCOUVER ----------
Toscani, A.M., Sampayo, R.G., Barabas, F.M., Fuentes, F., Simian, M., Leskow, F.C. Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models. PLoS ONE. 2017;12(3).
http://dx.doi.org/10.1371/journal.pone.0174230