Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Electrogenic bacteria are organisms that can transfer electrons to extracellular electron acceptors and have the potential to be used in devices such as bioelectrochemical systems (BES). In this study, Dietzia sp. RNV-4 bacterium has been isolated and identified based on its biochemical, physiological and morphological characteristics, as well as by its 16S rRNA sequence analysis. Furthermore, the current density production and electron transfer mechanisms were investigated using bioelectrochemical methods. The chronoamperometric data showed that the biofilm of Dietzia sp. RNV-4 grew as the current increased with time, reaching a maximum of 176.6 ± 66.1 mA/m2 at the end of the experiment (7 d); this highly suggests that the current was generated by the biofilm. The main electron transfer mechanism, indicated by the cyclic voltammograms, was due to secreted redox mediators. By high performance liquid chromatography, canthaxanthin was identified as the main compound involved in charge transfer between the bacteria and the solid electrodes. Dietzia sp. RNV-4 was used as biological material in a microbial fuel cell (MFC) and the current density production was 299.4 ± 40.2 mA/m2. This is the first time that Dietzia sp. RNV-4 has been electrochemically characterized and identified as a new electrogenic strain. © 2017 Sacco et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Isolation and characterization of a novel electrogenic bacterium, Dietzia sp. RNV-4
Autor:Sacco, N.J.; Bonetto, M.C.; Cortón, E.
Filiación:Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica and IQUIBICENCONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
Palabras clave:canthaxanthin; RNA 16S; canthaxanthin; RNA 16S; Article; bacterial phenomena and functions; bacterial strain; bacterium isolation; biochemistry; bioelectrochemistry; biofilm; controlled study; cyclic potentiometry; density; Dietzia; Dietzia RNV 4; electrochemistry; electrogenic bacterium; electron transport; high performance liquid chromatography; microbial fuel cell; new species; nonhuman; nucleotide sequence; RNA sequence; Actinobacteria; bioenergy; confocal microscopy; electrochemical analysis; electron; genetics; isolation and purification; metabolism; microbiology; oxidation reduction reaction; phylogeny; procedures; scanning electron microscopy; Actinobacteria; Bioelectric Energy Sources; Biofilms; Canthaxanthin; Electrochemical Techniques; Electron Transport; Electrons; Microscopy, Confocal; Microscopy, Electron, Scanning; Oxidation-Reduction; Phylogeny; RNA, Ribosomal, 16S
Año:2017
Volumen:12
Número:2
DOI: http://dx.doi.org/10.1371/journal.pone.0169955
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:canthaxanthin, 514-78-3; Canthaxanthin; RNA, Ribosomal, 16S
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v12_n2_p_Sacco

Referencias:

  • Abrevaya, X.C., Sacco, N.J., Bonetto, M.C., Hilding-Ohlsson, A., Cortón, E., Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand (2015) Biosens. Bioelectron, 63, pp. 580-590
  • Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Lovley, D.R., Harnessing microbially generated power on the seafloor (2002) Nat. Biotechnol., 20, pp. 821-825. , 12091916
  • Nevin, K.P., Richter, H., Covalla, S.F., Johnson, J.P., Woodard, T.L., Orloff, A.L., Jia, H., Lovley, D.R., Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells (2008) Environ. Microbiol., 10, pp. 2505-2514. , 18564184
  • Lanthier, M., Gregory, K.B., Lovley, D.R., Growth with high planktonic biomass in Shewanella oneidensis fuel cells (2008) FEMS Microbiol. Lett, 278, pp. 29-35. , 17995953
  • Logan, B.E., Rabaey, K., Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies (2012) Science, 337, pp. 686-690. , 22879507
  • Kumar, R., Singh, L., Zularisam, A.W., Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications (2016) Renew. Sustainable Energy Rev., 56, pp. 1322-1336
  • Velasquez-Orta, S.B., Head, I.M., Curtis, T.P., Scott, K., Lloyd, J.R., Von Canstein, H., The effect of flavin electron shuttles in microbial fuel cells current production (2010) Appl. Microbiol. Biotechnol., 85, pp. 1373-1381. , 19697021
  • Von Canstein, H., Ogawa, J., Shimizu, S., Lloyd, J.R., Secretion of flavins by Shewanella species and their role as extracellular redox mediators (2008) Appl. Environ. Microbiol., 74, pp. 615-623. , 18065612
  • Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., Bond, D.R., Shewanella secretes flavins that mediate extracellular electron transfer (2008) PNAS, 10, pp. 3968-3973
  • Brutinel, E., Gralnick, J., Shuttling happens: Soluble flavin mediators of extracellular electron transfer in Shewanella (2012) Appl. Microbiol. Biotechnol., 93, pp. 41-48. , 22072194
  • Kotloski, N.J., Gralnick, J.A., Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis (2013) MBio, 4 (1), pp. e00553-e00612. , 23322638
  • Liu, Y., Wang, Z., Liu, J., Levar, C., Edwards, M.J., Babauta, J.T., A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA (2014) Environ. Microbiol. Rep, 6, pp. 776-785. , 25139405
  • Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., Lovley, D.R., Extracellular electron transfer via microbial nanowires (2005) Nature, 435, pp. 1098-1110. , 15973408
  • Malvankar, N.S., Yalcin, S.E., Tuominen, M.T., Lovley, D.R., Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy (2014) Nat. Nanotechnol., 9, pp. 1012-1017. , 25326694
  • Marsili, E., Rollefson, J.B., Baron, D., Hozalski, R.M., Bond, D.R., Microbial biofilm voltammetry: Direct electrochemical characterization of catalytic electrode-attached biofilms (2008) Appl. Environ. Microbiol., 74, pp. 7329-7337
  • Inoue, K., Leang, C., Franks, A.E., Woodard, T.L., Nevin, K.P., Lovley, D.R., Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens (2011) Environ. Microbiol. Rep, 3, pp. 211-217. , 23761253
  • Jain, A., Zhang, X., Pastorella, G., Connolly, J.O., Barry, N., Woolley, R., Krishnamurthy, S., Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode (2012) Bioelectrochemistry, 87, pp. 28-32. , 22281091
  • Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components (2014) PNAS, 11, pp. 12883-12888
  • Wang, V.B., Kirchhofer, N.D., Chen, X., Tan, M.Y.L., Sivakumar, K., Cao, B., Comparison of flavins and a conjugated oligoelectrolyte in stimulating extracellular electron transport from Shewanella oneidensis MR-1 (2014) Electrochem. Commun., 41, pp. 55-58
  • Baron, D.B., LaBelle, E., Coursoll, D., Gralnick, J.A., Bond, D.R., Electrochemical measurements of electron transfer kinetics by Shewanella oneidensis MR-1 (2009) J. Biol. Chem., 284, pp. 28865-28873. , 19661057
  • Snider, R.M., Strycharz-Glaven, S.M., Tsoi, S.D., Erickson, J.S., Tender, L.M., Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient driven (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 15467-15472. , 22955881
  • Guo, K., Freguia, S., Dennis, P.G., Chen, X., Donose, B.C., Keller, J., Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems (2013) Environ. Sci. Technol., 47, pp. 7563-7570. , 23745742
  • Jayashree, C., Tamilarasan, K., Rajkumar, M., Arulazhagan, P., Yogalakshmi, K.N., Srikanth, M., Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm (2016) J. Environ. Manage, 180, pp. 351-358. , 27254294
  • Samsudeen, N., Radhakrishnan, T.K., Matheswaran, M., Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater (2015) Bioresour. Technol., 195, pp. 242-247. , 26212679
  • Abrevaya, X.C., Sacco, N.J., Bonetto, M.C., Hilding-Ohlsson, A., Cortón, E., Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses (2015) Biosens. Bioelectron, 63, pp. 591-601
  • Kumar, R., Lakhveer, S., Wahid, Z.A., Din, M.F., Exoelectrogens in microbial fuel cells toward bioelectricity generation: A review (2015) Int. J. Energy Res., 39, pp. 1048-1067
  • Sacco, N.J., Figuerola, E.L.M., Pataccini, G., Bonetto, M.C., Erijman, L., Cortón, E., Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells (2012) Bioresour. Technol., 126, pp. 328-335. , 23142927
  • Hungate, R.E., A roll tube method for cultivation of strict anaerobes (1969) Methods in Microbiology, pp. 117-132. , Norris JR, Ribbons EW eds. New York, Academic Press
  • Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets (2016) Molecular Biology and Evolution, 33, pp. 1870-1874. , 27004904
  • Merchant, I.A., Packer, R.A., (1969) Veterinary Bacteriology and Virology, , 7th Ed; The Iowa State University Press, Ames, Iowa, US
  • Schaeffer, A.B., Fulton, M., A simplified method of staining endospores (1933) Science, 77, p. 194. , 17741261
  • Christensen, G.D., Simpson, W.A., Younger, J.J., Baddour, L.M., Barrett, F.F., Melton, D.M., Beachey, E.H., Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices (1985) J. Clin. Microbiol., 22, pp. 996-1006. , 3905855
  • Mahon, C.R., Lehman, D.C., Manuselis, G., (2011) Textbook of Diagnostic Microbiology, , fourth ed., W. B. Saunders Co., Philadelphia
  • Gaby, W.L., Hadley, C., Practical laboratory test for the identification of Pseudomonas aeruginosa (1957) J. Bacteriol., 74, pp. 356-358. , 13475249
  • Esfahani-Mashhour, M., Moravej, H., Mehrabani-Yeganeh, H., Razavi, S.H., Evaluation of coloring potential of Dietzia natronolimnaea biomass as source of canthaxanthin for egg yolk pigmentation (2009) Asian-aust. J. Anim. Sci., 22, pp. 254-259
  • LaBelle, E., Bond, D.R., Bio-electrochemical systems: From extracellular electron transfer to biotechnological application (2009) Integrated Environmental Technology Series, , Wageningen University, The Netherlands
  • Harnisch, F., Freguia, S., A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms (2012) Chem. Asian J, 7, pp. 466-475. , 22279004
  • Liu, D., Gao, Y., Kispert, L.D., Electrochemical properties of natural carotenoids (2000) J. Electroanal. Chem., 488, pp. 140-150
  • Bard, A.J., Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd Ed., Wiley, New York, 2001
  • Khodaiyan, F., Razavi, S.H., Emam-Djomeh, Z., Mousavi, S.M.A., Hejazi, M.A., Effect of culture conditions on canthaxanthin production by Dietzia natronolimnaea HS-1 (2007) J. Microbiol. Biotechnol., 17, pp. 195-201. , 18051749
  • Asker, D., Ohta, Y., Production of canthaxanthin by extremely halophilic bacteria (1999) J. Biosci. Bioeng, 88, pp. 617-621. , 16232673
  • Yumoto, I., Nakamura, A., Iwata, H., Kojima, K., Kusumoto, K., Nodasaka, Y., Matsuyama, H., Dietzia psychralcaliphila sp. Nov., a novel facultatively sychrophilic alkaliphile that grows on hydrocarbons (2002) Int. J. Syst. Evol. Microbiol., 52, pp. 85-90. , 11837320
  • Bødtker, G., Hvidsten, I.V., Barth, T., Torsvik, T., Hydrocarbon degradation by Dietzia sp. A14101 isolated from an oil reservoir model column (2009) Anton. Leeuw. Int. J. G, 96, pp. 459-469
  • Von Der Weid, I., Marques, J.M., Cunha, D., Lippi, R.K., Dos Santos, S.C.C., Rosado, A.S., Lins, U., Seldin, L., Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleumcontaminated tropical soil (2007) Syst. Appl. Microbiol., 30, pp. 331-339. , 17174505
  • Bhosale, P., Bernstein, P.S., Microbial xanthophylls (2005) Appl. Microbiol. Biotechnol., 68, pp. 445-455. , 16001255
  • Edge, R., McGarvey, D., Truscott, T., Carotenoids as antioxidants-A review (1997) J. Photochem. Photobiol. B Biol., 41, pp. 189-200
  • Nelis, J.H., De Leenheer, P.A., Microbial sources of carotenoid pigments used in foods and feeds (1991) J. Appl. Bacteriol., 70, pp. 181-191
  • Logan, B.E., Power Generation (2008) Microbial Fuel Cells, pp. 44-60. , John Wiley &Sons, New York
  • Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Rabaey, K., Microbial fuel cells: Methodology and technology (2006) Environ. Sci. Technol., 40, pp. 5181-5192. , 16999087
  • Lovley, D.R., Bug juice: Harvesting electricity with microorganisms (2006) Nat. Rev. Microbiol., 4, pp. 497-508. , 16778836
  • Watson, V.J., Logan, B.E., Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures (2010) Biotechnol. Bioeng, 105, pp. 489-498. , 19787640

Citas:

---------- APA ----------
Sacco, N.J., Bonetto, M.C. & Cortón, E. (2017) . Isolation and characterization of a novel electrogenic bacterium, Dietzia sp. RNV-4. PLoS ONE, 12(2).
http://dx.doi.org/10.1371/journal.pone.0169955
---------- CHICAGO ----------
Sacco, N.J., Bonetto, M.C., Cortón, E. "Isolation and characterization of a novel electrogenic bacterium, Dietzia sp. RNV-4" . PLoS ONE 12, no. 2 (2017).
http://dx.doi.org/10.1371/journal.pone.0169955
---------- MLA ----------
Sacco, N.J., Bonetto, M.C., Cortón, E. "Isolation and characterization of a novel electrogenic bacterium, Dietzia sp. RNV-4" . PLoS ONE, vol. 12, no. 2, 2017.
http://dx.doi.org/10.1371/journal.pone.0169955
---------- VANCOUVER ----------
Sacco, N.J., Bonetto, M.C., Cortón, E. Isolation and characterization of a novel electrogenic bacterium, Dietzia sp. RNV-4. PLoS ONE. 2017;12(2).
http://dx.doi.org/10.1371/journal.pone.0169955