Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

One of the first and essential steps in gene expression regulation involves the recruitment of transcription factors (TFs) to specific response elements located at enhancers and/or promoters of targeted genes. These DNA elements have a certain variability in both sequence and length, which may affect the final transcriptional output. The molecular mechanisms in which TFs integrate the subtle differences within specific recognition sequences to offer different transcriptional responses is still largely unknown. Here we used molecular dynamics simulations to study the DNA binding behavior of the glucocorticoid receptor (GR), a ligand-regulated TF with pleiotropic effects in almost all cells. By comparing the behavior of the wild type receptor and a well characterized Ala477Thr substitution within the rat GR DNA binding domain, we found that the region that connects the two-zinc fingers (i.e. the lever arm) would likely play a key role in GR transcriptional output. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Registro:

Documento: Artículo
Título:Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain suggest a role of the lever-arm mobility in transcriptional output
Autor:Álvarez, L.D.; Presman, D.M.; Pecci, A.
Filiación:Universidad de Buenos Aires, CONICET, UMYMFOR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, MD, United States
Universidad de Buenos Aires, CONICET, IFIBYNE, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Palabras clave:DNA; glucocorticoid receptor; transcription factor; coordination compound; DNA; glucocorticoid receptor; protein binding; zinc; amino acid substitution; Article; dimerization; DNA structure; molecular dynamics; molecular mechanics; nonhuman; protein DNA binding; protein DNA interaction; protein domain; wild type; amino acid sequence; animal; binding site; chemistry; conformation; genetic transcription; hydrogen bond; molecular dynamics; promoter region; protein domain; protein multimerization; protein quaternary structure; rat; Amino Acid Sequence; Animals; Binding Sites; Coordination Complexes; DNA; Hydrogen Bonding; Molecular Dynamics Simulation; Nucleic Acid Conformation; Promoter Regions, Genetic; Protein Binding; Protein Interaction Domains and Motifs; Protein Multimerization; Protein Structure, Quaternary; Rats; Receptors, Glucocorticoid; Transcription, Genetic; Zinc
Año:2017
Volumen:12
Número:12
DOI: http://dx.doi.org/10.1371/journal.pone.0189588
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:DNA, 9007-49-2; zinc, 7440-66-6, 14378-32-6; Coordination Complexes; DNA; Receptors, Glucocorticoid; Zinc
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v12_n12_p_Alvarez

Referencias:

  • Weikum, E.R., Knuesel, M.T., Ortlund, E.A., Yamamoto, K.R., Glucocorticoid receptor control of transcription: Precision and plasticity via allostery (2017) Nature Reviews Molecular Cell Biology, 18, pp. 159-174. , https://doi.org/10.1038/nrm.2016.152, PMID: 28053348
  • Beato, M., Herrlich, P., Schutz, G., Steroid hormone receptors: Many actors in search of a plot (1995) Cell, 83, pp. 851-857. , PMID: 8521509
  • Presman, D.M., Ganguly, S., Schiltz, R.L., Johnson, T.A., Karpova, T.S., Hager, G.L., DNA binding triggers tetramerization of the glucocorticoid receptor in live cells (2016) Proceedings of The National Academy of Sciences of The United States of America, 113, pp. 8236-8241. , https://doi.org/10.1073/pnas.1606774113PMID, 27382178
  • Presman, D.M., Hager, G.L., More than meets the dimer: What is the quaternary structure of the glucocorticoid receptor? (2017) Transcription, 8, pp. 32-39. , https://doi.org/10.1080/21541264.2016.1249045, PMID: 27764575
  • Ramamoorthy, S., Cidlowski, J.A., Exploring the molecular mechanisms of glucocorticoid receptor action from sensitivity to resistance (2013) Endocrine Development, 24, pp. 41-56. , https://doi.org/10.1159/000342502, PMID: 23392094
  • Helsen, C., Kerkhofs, S., Clinckemalie, L., Spans, L., Laurent, M., Boonen, S., Structural basis for nuclear hormone receptor DNA binding (2012) Molecular and Cellular Endocrinology, 348, pp. 411-417. , https://doi.org/10.1016/j.mce.2011.07.025, PMID: 21801809
  • Dahlman-Wright, K., Wright, A., Gustafsson, J.A., Carlstedt-Duke, J., Interaction of the glucocorticoid receptor DNA-binding domain with DNA as a dimer is mediated by a short segment of five amino acids (1991) The Journal of Biological Chemistry, 266, pp. 3107-3112. , PMID: 1993683
  • Heck, S., Kullmann, M., Gast, A., Ponta, H., Rahmsdorf, H.J., Herrlich, P., A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1 (1994) The EMBO Journal, 13, pp. 4087-4095. , PMID: 8076604
  • Reichardt, H.M., Kaestner, K.H., Tuckermann, J., Kretz, O., Wessely, O., Bock, R., DNA binding of the glucocorticoid receptor is not essential for survival (1998) Cell, 93, pp. 531-541. , PMID: 9604929
  • Meijsing, S.H., Pufall, M.A., So, A.Y., Bates, D.L., Chen, L., Yamamoto, K.R., DNA binding site sequence directs glucocorticoid receptor structure and activity (2009) Science, 324, pp. 407-410. , https://doi.org/10.1126/science.1164265, PMID: 19372434
  • Beato, M., Gene regulation by steroid hormones (1989) Cell, 56, pp. 335-344. , PMID: 2644044
  • Watson, L.C., Kuchenbecker, K.M., Schiller, B.J., Gross, J.D., Pufall, M.A., Yamamoto, K.R., The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals (2013) Nature Structural & Molecular Biology, 20, pp. 876-883
  • Clark, A.R., Belvisi, M.G., Maps and legends: The quest for dissociated ligands of the glucocorticoid receptor (2012) Pharmacology & Therapeutics, 134, pp. 54-67
  • Jewell, C.M., Scoltock, A.B., Hamel, B.L., Yudt, M.R., Cidlowski, J.A., Complex human glucocorticoid receptor dim mutations define glucocorticoid induced apoptotic resistance in bone cells (2012) Molecular Endocrinology, 26, pp. 244-256. , https://doi.org/10.1210/me.2011-1116, PMID: 22174376
  • Presman, D.M., Ogara, M.F., Stortz, M., Alvarez, L.D., Pooley, J.R., Schiltz, R.L., Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor (2014) PLoS Biology, 12. , https://doi.org/10.1371/journal.pbio.1001813, PMID: 24642507
  • Robertson, S., Rohwer, J.M., Hapgood, J.P., Louw, A., Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: A cell culture model (2013) PloS One, 8. , https://doi.org/10.1371/journal.pone.0064831, PMID: 23717665
  • Adams, M., Meijer, O.C., Wang, J., Bhargava, A., Pearce, D., Homodimerization of the glucocorticoid receptor is not essential for response element binding: Activation of the phenylethanolamine N-methyl-transferase gene by dimerization-defective mutants (2003) Molecular Endocrinology, 17, pp. 2583-2592. , https://doi.org/10.1210/me.2002-0305, PMID: 12933902
  • Lim, H.W., Uhlenhaut, N.H., Rauch, A., Weiner, J., Hubner, S., Hübner, N., Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo (2015) Genome Research, 25, pp. 836-844. , https://doi.org/10.1101/gr.188581.114, PMID: 25957148
  • Schiller, B.J., Chodankar, R., Watson, L.C., Stallcup, M.R., Yamamoto, K.R., Glucocorticoid receptor binds half sites as a monomer and regulates specific target genes (2014) Genome Biology, 15, p. 418. , https://doi.org/10.1186/s13059-014-0418-y, PMID: 25085117
  • Frijters, R., Fleuren, W., Toonen, E.J., Tuckermann, J.P., Reichardt, H.M., van der Maaden, H., Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor (2010) BMC Genomics, 11, p. 359. , https://doi.org/10.1186/1471-2164-11-359PMID, 20525385
  • Rogatsky, I., Wang, J.C., Derynck, M.K., Nonaka, D.F., Khodabakhsh, D.B., Haqq, C.M., Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor (2003) Proceedings of the National Academy of Sciences of the United States of America, 100, pp. 13845-13850. , https://doi.org/10.1073/pnas.2336092100, PMID: 14617768
  • Zhou, P., Tian, F., Lv, F., Shang, Z., Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins (2009) Proteins, 76, pp. 151-163. , https://doi.org/10.1002/prot.22327, PMID: 19089987
  • Rohs, R., West, S.M., Sosinsky, A., Liu, P., Mann, R.S., Honig, B., The role of DNA shape in protein-DNA recognition (2009) Nature, 461, pp. 1248-1253. , https://doi.org/10.1038/nature08473, PMID: 19865164
  • Lu, X.J., Olson, W.K., 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures (2003) Nucleic Acids Research, 31, pp. 5108-5121. , https://doi.org/10.1093/nar/gkg680, PMID: 12930962
  • Stortz, M., Presman, D.M., Bruno, L., Annibale, P., Dansey, M.V., Burton, G., Mapping the Dynamics of the Glucocorticoid Receptor within the Nuclear Landscape (2017) Scientific Report, 7, p. 6219
  • Li, H., Robertson, A.D., Jensen, J.H., Very fast empirical prediction and rationalization of protein pKa values (2005) Proteins, 61, pp. 704-721. , https://doi.org/10.1002/prot.20660, PMID: 16231289
  • Case, D.A., Betz, R.M., Cerutti, D.S., Cheatham, T.E., 3rd, Darden, T.A., Duke, R.E., (2015) Amber 15, , University of California, San Francisco
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Comparison of simple potential functions for simulating liquid water (1998) The Journal of Chemical Physics, 79, pp. 926-935
  • Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., Simmerling, C., Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB (2015) Journal of Chemical Theory Computation, 8, pp. 3696-3713
  • Ivani, I., Dans, P.D., Noy, A., Pérez, A., Faustino, I., Hospital, A., Parmbsc1: A refined force field for DNA simulations (2016) Nature Methods, 13, pp. 55-58. , https://doi.org/10.1038/nmeth.3658, PMID: 26569599
  • Peters, M.B., Yang, Y., Wang, B., Fusti-Molnar, L., Weaver, M.N., Merz, K.M., Structural Survey of Zinc Containing Proteins and the Development of the Zinc AMBER Force Field (ZAFF) (2010) Journal of Chemical Theory and Computation, 6, pp. 2935-2947. , https://doi.org/10.1021/ct1002626, PMID: 20856692
  • Roe, D.R., Cheatham, T.E., 3rd, PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data (2013) Journal of Chemical Theory and Computation, 9, pp. 3084-3095. , https://doi.org/10.1021/ct400341p, PMID: 26583988
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) Journal of Molecular Graphics, 14, pp. 33-38. , 27–38. PMID: 8744570
  • Kabsch, W., Sander, C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features (1983) Biopolymers, 22, pp. 2577-2637. , https://doi.org/10.1002/bip.360221211PMID, 6667333
  • Miller, B.R., 3rd, McGee, T.D., Jr., Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E., MMPBSA.py: An Efficient Program for End-State Free Energy Calculations (2012) Journal of Chemical Theory and Computation, 11, pp. 3314-3321
  • David, C.C., Jacobs, D.J., Principal component analysis: A method for determining the essential dynamics of proteins (2014) Methods Molecular Biology, 1084, pp. 193-226
  • Vanwart, A.T., Eargle, J., Luthey-Schulten, Z., Amaro, R.E., Exploring residue component contributions to dynamical network models of allostery (2012) Journal of Chemical Theory and Computation, 8, pp. 2949-2961. , https://doi.org/10.1021/ct300377a, PMID: 23139645
  • Ribeiro, A.A., Ortiz, V., Determination of Signaling Pathways in Proteins through Network Theory: Importance of the Topology (2014) Journal of Chemical Theory and Computation, 10, pp. 1762-1769. , https://doi.org/10.1021/ct400977r, PMID: 26580384
  • Newman, M.E., Girvan, M., Finding and evaluating community structure in networks (2004) Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 69, p. 026113. , https://doi.org/10.1103/PhysRevE.69.026113, PMID: 14995526
  • Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D., Zakrzewska, K., Conformational analysis of nucleic acids revisited: Curves+ (2009) Nucleic Acids Research, 37, pp. 5917-5929. , https://doi.org/10.1093/nar/gkp608, PMID: 19625494

Citas:

---------- APA ----------
Álvarez, L.D., Presman, D.M. & Pecci, A. (2017) . Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain suggest a role of the lever-arm mobility in transcriptional output. PLoS ONE, 12(12).
http://dx.doi.org/10.1371/journal.pone.0189588
---------- CHICAGO ----------
Álvarez, L.D., Presman, D.M., Pecci, A. "Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain suggest a role of the lever-arm mobility in transcriptional output" . PLoS ONE 12, no. 12 (2017).
http://dx.doi.org/10.1371/journal.pone.0189588
---------- MLA ----------
Álvarez, L.D., Presman, D.M., Pecci, A. "Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain suggest a role of the lever-arm mobility in transcriptional output" . PLoS ONE, vol. 12, no. 12, 2017.
http://dx.doi.org/10.1371/journal.pone.0189588
---------- VANCOUVER ----------
Álvarez, L.D., Presman, D.M., Pecci, A. Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain suggest a role of the lever-arm mobility in transcriptional output. PLoS ONE. 2017;12(12).
http://dx.doi.org/10.1371/journal.pone.0189588