Artículo

Barraza, C.E.; Solari, C.A.; Marcovich, I.; Kershaw, C.; Galello, F.; Rossi, S.; Ashe, M.P.; Portela, P. "The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae" (2017) PLoS ONE. 12(10)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs) and processing bodies (PBs). Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs. © 2017 Barraza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae
Autor:Barraza, C.E.; Solari, C.A.; Marcovich, I.; Kershaw, C.; Galello, F.; Rossi, S.; Ashe, M.P.; Portela, P.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular "Dr. Hector N. Torres", Buenos Aires, Argentina
Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
Palabras clave:cyclic AMP dependent protein kinase; heat shock protein 30; initiation factor 4E; initiation factor 4G; Pab1 protein; peptides and proteins; unclassified drug; cyclic AMP dependent protein kinase; cyclic AMP dependent protein kinase catalytic subunit; protein aggregate; protein subunit; Saccharomyces cerevisiae protein; TPK2 protein, S cerevisiae; Tpk3 protein, S cerevisiae; Article; cell viability; cellular distribution; controlled study; CYC1 gene; ENO2 gene; enzyme activity; enzyme localization; gene deletion; gene expression; heat stress; heat tolerance; HSP30 gene; HSP42 gene; in vitro study; nonhuman; protein aggregation; protein expression; protein RNA binding; RNA translation; Saccharomyces cerevisiae; TPK2 gene; TPK3 gene; translation initiation; translation regulation; cell fractionation; cell granule; enzymology; heat shock response; metabolism; physiological stress; protein subunit; protein synthesis; Saccharomyces cerevisiae; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits; Cyclic AMP-Dependent Protein Kinases; Cytoplasmic Granules; Heat-Shock Response; Protein Aggregates; Protein Biosynthesis; Protein Subunits; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Stress, Physiological; Subcellular Fractions
Año:2017
Volumen:12
Número:10
DOI: http://dx.doi.org/10.1371/journal.pone.0185416
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:cyclic AMP dependent protein kinase; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits; Cyclic AMP-Dependent Protein Kinases; Protein Aggregates; Protein Subunits; Saccharomyces cerevisiae Proteins; TPK2 protein, S cerevisiae; Tpk3 protein, S cerevisiae
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v12_n10_p_Barraza

Referencias:

  • Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Genomic expression programs in the response of yeast cells to environmental changes (2000) Molecular Biology of The Cell, 11 (12), pp. 4241-4257. , PMID: 11102521; PubMed Central PMCID: PMC15070
  • Gasch, A.P., Werner-Washburne, M., The genomics of yeast responses to environmental stress and starvation (2002) Functional & Integrative Genomics, 2 (4-5), pp. 181-192. , https://doi.org/10.1007/s10142-002-0058-2, PMID: 12192591
  • Preiss, T., Baron-Benhamou, J., Ansorge, W., Hentze, M.W., Homodirectional changes in transcriptome composition and mRNA translation induced by rapamycin and heat shock (2003) Nat Struct Biol, 10 (12), pp. 1039-1047. , https://doi.org/10.1038/nsb1015, PMID: 14608375
  • Grousl, T., Ivanov, P., Frydlova, I., Vasicova, P., Janda, F., Vojtova, J., Robust heat shock induces eIF2al-pha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae (2009) J Cell Sci, 122, pp. 2078-2088. , https://doi.org/10.1242/jcs.045104, PMID: 19470581
  • Cowart, L.A., Gandy, J.L., Tholanikunnel, B., Hannun, Y.A., Sphingolipids mediate formation of mRNA processing bodies during the heat-stress response of Saccharomyces cerevisiae (2010) The Biochemical Journal, 431 (1), pp. 31-38. , https://doi.org/10.1042/BJ20100307, PMID: 20629639; PubMed Central PMCID: PMC3804835
  • Kanshin, E., Kubiniok, P., Thattikota, Y., D’Amours, D., Thibault, P., Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress (2015) Molecular Systems Biology, 11 (6), p. 813. , https://doi.org/10.15252/msb.20156170, PMID: 26040289; PubMed Central PMCID: PMC4501848
  • Buchan, J.R., Muhlrad, D., Parker, R., P bodies promote stress granule assembly in Saccharomyces cerevisiae (2008) The Journal of Cell Biology, 183 (3), pp. 441-455. , https://doi.org/10.1083/jcb.200807043, PMID: 18981231; PubMed Central PMCID: PMC2575786
  • Hoyle, N.P., Castelli, L.M., Campbell, S.G., Holmes, L.E., Ashe, M.P., Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies (2007) The Journal of Cell Biology, 179 (1), pp. 65-74. , https://doi.org/10.1083/jcb.200707010, PMID: 17908917; PubMed Central PMCID: PMC2064737
  • Kato, K., Yamamoto, Y., Izawa, S., Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae (2011) Yeast, 28 (5), pp. 339-347. , https://doi.org/10.1002/yea.1842, PMID: 21341306
  • Grousl, T., Ivanov, P., Malcova, I., Pompach, P., Frydlova, I., Slaba, R., Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. Cerevisiae (2013) Plos One, 8 (2). , https://doi.org/10.1371/journal.pone.0057083, PMID: 23451152; PubMed Central PMCID: PMC3581570
  • Toda, T., Cameron, S., Sass, P., Zoller, M., Wigler, M., Three different genes in S. Cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase (1987) Cell, 50 (2), pp. 277-287. , PMID: 3036373
  • Beullens, M., Mbonyi, K., Geerts, L., Gladines, D., Detremerie, K., Jans, A.W., Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae (1988) Eur J Biochem, 172 (1), pp. 227-231. , PMID: 2831059
  • Rolland, F., De Winde, J.H., Lemaire, K., Boles, E., Thevelein, J.M., Winderickx, J., Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process (2000) Mol Microbiol, 38 (2), pp. 348-358. , PMID: 11069660
  • Donaton, M.C., Holsbeeks, I., Lagatie, O., Van Zeebroeck, G., Crauwels, M., Winderickx, J., The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae (2003) Mol Microbiol, 50 (3), pp. 911-929. , PMID: 14617151
  • Santangelo, G.M., Glucose signaling in Saccharomyces cerevisiae (2006) Microbiol Mol Biol Rev, 70 (1), pp. 253-282. , https://doi.org/10.1128/MMBR.70.1.253-282.2006, PMID: 16524925; PubMed Central PMCID: PMCPMC1393250
  • Gray, J.V., Petsko, G.A., Johnston, G.C., Ringe, D., Singer, R.A., Werner-Washburne, M., "Sleeping beauty": Quiescence in Saccharomyces cerevisiae (2004) Microbiol Mol Biol Rev, 68 (2), pp. 187-206. , https://doi.org/10.1128/MMBR.68.2.187-206.2004, PMID: 15187181; PubMed Central PMCID: PMCPMC419917
  • Verghese, J., Abrams, J., Wang, Y., Morano, K.A., Biology of the heat shock response and protein chaperones: Budding yeast (Saccharomyces cerevisiae) as a model system (2012) Microbiology and Molecular Biology Reviews: MMBR, 76 (2), pp. 115-158. , https://doi.org/10.1128/MMBR.05018-11, PMID: 22688810; PubMed Central PMCID: PMC3372250
  • Tudisca, V., Recouvreux, V., Moreno, S., Boy-Marcotte, E., Jacquet, M., Portela, P., Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions (2010) Eur J Cell Biol, 89 (4), pp. 339-348. , https://doi.org/10.1016/j.ejcb.2009.08.005, PMID: 19804918
  • Tudisca, V., Simpson, C., Castelli, L., Lui, J., Hoyle, N., Moreno, S., PKA isoforms coordinate mRNA fate during nutrient starvation (2012) J Cell Sci, 125, pp. 5221-5232. , https://doi.org/10.1242/jcs.111534, PMID: 22899713; PubMed Central PMCID: PMCPMC3533396
  • Buchan, J.R., Yoon, J.H., Parker, R., Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae (2011) Journal of Cell Science, 124, pp. 228-239. , https://doi.org/10.1242/jcs.078444, PMID: 21172806; PubMed Central PMCID: PMC3010191
  • Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., Global analysis of protein localization in budding yeast (2003) Nature, 425 (6959), pp. 686-691. , https://doi.org/10.1038/nature02026, PMID: 14562095
  • Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., Cullin, C., A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae (1993) Nucleic Acids Res, 21 (14), pp. 3329-3330. , PMID: 8341614; PubMed Central PMCID: PMCPMC309783
  • Portela, P., Howell, S., Moreno, S., Rossi, S., In vivo and in vitro phosphorylation of two isoforms of yeast pyruvate kinase by protein kinase A (2002) J Biol Chem, 277 (34), pp. 30477-30487. , https://doi.org/10.1074/jbc.M201094200, PMID: 12063246
  • Ashe, M.P., De Long, S.K., Sachs, A.B., Glucose depletion rapidly inhibits translation initiation in yeast (2000) Molecular Biology of The Cell, 11 (3), pp. 833-848. , PMID: 10712503; PubMed Central PMCID: PMC14814
  • Haesendonckx, S., Tudisca, V., Voordeckers, K., Moreno, S., Thevelein, J.M., Portela, P., The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae (2012) Biochem J, 448 (3), pp. 307-320. , https://doi.org/10.1042/BJ20121061, PMID: 22957732
  • Roskoski, R., Jr., Regional distribution of choline acetyltransferase activity and multiple affinity forms of the muscarinic receptor in heart (1983) Adv Exp Med Biol, 161, pp. 159-178. , PMID: 6346814
  • Griffioen, G., Anghileri, P., Imre, E., Baroni, M.D., Ruis, H., Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae (2000) The Journal of Biological Chemistry, 275 (2), pp. 1449-1456. , PMID: 10625697
  • Baccarini, L., Martinez-Montanes, F., Rossi, S., Proft, M., Portela, P., PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae (2015) Biochim Biophys Acta, 1849 (11), pp. 1329-1339. , https://doi.org/10.1016/j.bbagrm.2015.09.007, PMID: 26403272
  • Cherkasov, V., Hofmann, S., Druffel-Augustin, S., Mogk, A., Tyedmers, J., Stoecklin, G., Coordination of translational control and protein homeostasis during severe heat stress (2013) Curr Biol, 23 (24), pp. 2452-2462. , https://doi.org/10.1016/j.cub.2013.09.058, PMID: 24291094
  • Cherkasov, V., Grousl, T., Theer, P., Vainshtein, Y., Glasser, C., Mongis, C., Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress (2015) FEBS Lett, 589 (23), pp. 3654-3664. , https://doi.org/10.1016/j.febslet.2015.10.010, PMID: 26484595
  • Meier, K.D., Deloche, O., Kajiwara, K., Funato, K., Riezman, H., Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae (2006) Mol Biol Cell, 17 (3), pp. 1164-1175. , https://doi.org/10.1091/mbc.E05-11-1039, PMID: 16381812; PubMed Central PMCID: PMCPMC1382306
  • Kedersha, N.L., Gupta, M., Li, W., Miller, I., Anderson, P., RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules (1999) The Journal of Cell Biology, 147 (7), pp. 1431-1442. , PMID: 10613902; PubMed Central PMCID: PMC2174242
  • Castelli, L.M., Lui, J., Campbell, S.G., Rowe, W., Zeef, L.A., Holmes, L.E., Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated (2011) Molecular Biology of The Cell, 22 (18), pp. 3379-3393. , https://doi.org/10.1091/mbc.E11-02-0153, PMID: 21795399; PubMed Central PMCID: PMC3172263
  • Shivaswamy, S., Iyer, V.R., Stress-dependent dynamics of global chromatin remodeling in yeast: Dual role for SWI/SNF in the heat shock stress response (2008) Molecular and Cellular Biology, 28 (7), pp. 2221-2234. , https://doi.org/10.1128/MCB.01659-07, PMID: 18212068; PubMed Central PMCID: PMC2268435
  • Robertson, L.S., Causton, H.C., Young, R.A., Fink, G.R., The yeast A kinases differentially regulate iron uptake and respiratory function (2000) Proceedings of The National Academy of Sciences of The United States of America, 97 (11), pp. 5984-5988. , https://doi.org/10.1073/pnas.100113397, PMID: 10811893; PubMed Central PMCID: PMC18545
  • Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Remodeling of yeast genome expression in response to environmental changes (2001) Molecular Biology of The Cell, 12 (2), pp. 323-337. , PMID: 11179418; PubMed Central PMCID: PMC30946
  • Zid, B.M., O’Shea, E.K., Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast (2014) Nature, 514 (7520), pp. 117-121. , https://doi.org/10.1038/nature13578, PMID: 25119046; PubMed Central PMCID: PMC4184922
  • Jamison, J.T., Kayali, F., Rudolph, J., Marshall, M., Kimball, S.R., DeGracia, D.J., Persistent redistribution of poly-adenylated mRNAs correlates with translation arrest and cell death following global brain ischemia and reperfusion (2008) Neuroscience, 154 (2), pp. 504-520. , https://doi.org/10.1016/j.neuroscience.2008.03.057, PMID: 18456413; PubMed Central PMCID: PMC2494580
  • Kedersha, N., Ivanov, P., Anderson, P., Stress granules and cell signaling: More than just a passing phase? (2013) Trends in Biochemical Sciences, 38 (10), pp. 494-506. , https://doi.org/10.1016/j.tibs.2013.07.004, PMID: 24029419; PubMed Central PMCID: PMC3832949
  • Takahara, T., Maeda, T., Transient sequestration of TORC1 into stress granules during heat stress (2012) Molecular Cell, 47 (2), pp. 242-252. , https://doi.org/10.1016/j.molcel.2012.05.019, PMID: 22727621
  • Arimoto, K., Fukuda, H., Imajoh-Ohmi, S., Saito, H., Takekawa, M., Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways (2008) Nature Cell Biology, 10 (11), pp. 1324-1332. , https://doi.org/10.1038/ncb1791, PMID: 18836437
  • Tsai, N.P., Wei, L.N., RhoA/ROCK1 signaling regulates stress granule formation and apoptosis (2010) Cellular Signalling, 22 (4), pp. 668-675. , https://doi.org/10.1016/j.cellsig.2009.12.001, PMID: 20004716; PubMed Central PMCID: PMC2815184
  • Chong, P.A., Forman-Kay, J.D., Liquid-liquid phase separation in cellular signaling systems (2016) Current Opinion in Structural Biology, 41, pp. 180-186. , https://doi.org/10.1016/j.sbi.2016.08.001, PMID: 27552079
  • Brangwynne, C.P., Phase transitions and size scaling of membrane-less organelles (2013) The Journal of Cell Biology, 203 (6), pp. 875-881. , https://doi.org/10.1083/jcb.201308087, PMID: 24368804; PubMed Central PMCID: PMC3871435
  • Xie, R., Cheng, M., Li, M., Xiong, X., Daadi, M., Sapolsky, R.M., Akt isoforms differentially protect against stroke-induced neuronal injury by regulating mTOR activities (2013) Journal of Cerebral Blood Flow and Metabolism: Official Journal of The International Society of Cerebral Blood Flow and Metabolism, 33 (12), pp. 1875-1885. , https://doi.org/10.1038/jcbfm.2013.132, PMID: 23942361; PubMed Central PMCID: PMC3851893
  • Girardi, C., James, P., Zanin, S., Pinna, L.A., Ruzzene, M., Differential phosphorylation of Akt1 and Akt2 by protein kinase CK2 may account for isoform specific functions (2014) Biochimica Et Biophysica Acta, 1843 (9), pp. 1865-1874. , https://doi.org/10.1016/j.bbamcr.2014.04.020, PMID: 24769357
  • Cortes-Vieyra, R., Silva-Garcia, O., Oviedo-Boyso, J., Huante-Mendoza, A., Bravo-Patino, A., Valdez-Alarcon, J.J., The Glycogen Synthase Kinase 3alpha and beta Isoforms Differentially Regulates Interleukin-12p40 Expression in Endothelial Cells Stimulated with Peptidoglycan from Staphylococcus aureus (2015) Plos One, 10 (7). , https://doi.org/10.1371/journal.pone.0132867, PMID: 26200352; PubMed Central PMCID: PMC4511647
  • Giacometti, R., Kronberg, F., Biondi, R.M., Passeron, S., Catalytic isoforms Tpk1 and Tpk2 of Candida albicans PKA have non-redundant roles in stress response and glycogen storage (2009) Yeast, 26 (5), pp. 273-285. , https://doi.org/10.1002/yea.1665, PMID: 19391100
  • Galello, F., Portela, P., Moreno, S., Rossi, S., Characterization of substrates that have a differential effect on Saccharomyces cerevisiae protein kinase A holoenzyme activation (2010) J Biol Chem, 285 (39), pp. 29770-29779. , https://doi.org/10.1074/jbc.M110.120378, PMID: 20639203; PubMed Central PMCID: PMCPMC2943320
  • Pan, X., Heitman, J., Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae (1999) Molecular and Cellular Biology, 19 (7), pp. 4874-4887. , PMID: 10373537; PubMed Central PMCID: PMC84286
  • Pan, X., Heitman, J., Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation (2002) Molecular and Cellular Biology, 22 (12), pp. 3981-3993. , https://doi.org/10.1128/MCB.22.12.3981-3993.2002, PMID: 12024012; PubMed Central PMCID: PMC133872
  • Pautasso, C., Rossi, S., Transcriptional regulation of the protein kinase A subunits in Saccharomyces cerevisiae: Autoregulatory role of the kinase A activity (2014) Biochimica Et Biophysica Acta, 1839 (4), pp. 275-287. , https://doi.org/10.1016/j.bbagrm.2014.02.005, PMID: 24530423
  • Cherry, J.M., Hong, E.L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E.T., Saccharomyces Genome Database: The genomics resource of budding yeast (2012) Nucleic Acids Research, 40, pp. D700-D705. , https://doi.org/10.1093/nar/gkr1029, (Database issue) PMID: 22110037; PubMed Central PMCID: PMC3245034
  • Solari, C.A., Tudisca, V., Pugliessi, M., Nadra, A.D., Moreno, S., Portela, P., Regulation of PKA activity by an autophosphorylation mechanism in Saccharomyces cerevisiae (2014) Biochem J, 462 (3), pp. 567-579. , https://doi.org/10.1042/BJ20140577, PMID: 24947305

Citas:

---------- APA ----------
Barraza, C.E., Solari, C.A., Marcovich, I., Kershaw, C., Galello, F., Rossi, S., Ashe, M.P.,..., Portela, P. (2017) . The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae. PLoS ONE, 12(10).
http://dx.doi.org/10.1371/journal.pone.0185416
---------- CHICAGO ----------
Barraza, C.E., Solari, C.A., Marcovich, I., Kershaw, C., Galello, F., Rossi, S., et al. "The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae" . PLoS ONE 12, no. 10 (2017).
http://dx.doi.org/10.1371/journal.pone.0185416
---------- MLA ----------
Barraza, C.E., Solari, C.A., Marcovich, I., Kershaw, C., Galello, F., Rossi, S., et al. "The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae" . PLoS ONE, vol. 12, no. 10, 2017.
http://dx.doi.org/10.1371/journal.pone.0185416
---------- VANCOUVER ----------
Barraza, C.E., Solari, C.A., Marcovich, I., Kershaw, C., Galello, F., Rossi, S., et al. The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae. PLoS ONE. 2017;12(10).
http://dx.doi.org/10.1371/journal.pone.0185416