Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Trypanosoma cruzi is the causative agent of Chagas' disease, which is a major endemic disease in Latin America and is recognized by the WHO as one of the 17 neglected tropical diseases in the world. Psilostachyin and psilostachyin C, two sesquiterpene lactones isolated from Ambrosia spp., have been demonstrated to have trypanocidal activity. Considering both the potential therapeutic targets present in the parasite, and the several mechanisms of action proposed for sesquiterpene lactones, the aim of this work was to characterize the mode of action of psilostachyin and psilostachyin C on Trypanosoma cruzi and to identify the possible targets for these molecules. Psilostachyin and psilostachyin C were isolated from Ambrosia tenuifolia and Ambrosia scabra, respectively. Interaction of sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of cruzi-pain and trypanothione reductase and their ability to inhibit sterol biosynthesis were evaluated. The induction of cell death by apoptosis was also evaluated by analyzing phosphatidylserine exposure detected using annexin-V/propidium iodide, decreased mitochondrial membrane potential, assessed with Rhodamine 123 and nuclear DNA fragmentation evaluated by the TUNEL assay. Both STLs were capable of interacting with hemin. Psilostachyin increased about 5 times the generation of reactive oxygen species in Trypanosoma cruzi after a 4h treatment, unlike psilostachyin C which induced an increase in reactive oxygen species levels of only 1.5 times. Only psilostachyin C was able to inhibit the biosynthesis of ergosterol, causing an accumulation of squalene. Both sesquiterpene lactones induced parasite death by apoptosis. Upon evaluating the combination of both compounds, and additive trypanocidal effect was observed. Despite their structural similarity, both sesquiterpene lactones exerted their anti-T. cruzi activity through interaction with different targets. Psilostachyin accomplished its antiparasitic effect by interacting with hemin, while psilostachyin C interfered with sterol synthesis. © 2016 Sülsen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Mode of action of the sesquiterpene lactones psilostachyin and psilostachyin C on trypanosoma cruzi
Autor:Sülsen, V.P.; Puente, V.; Papademetrio, D.; Batlle, A.; Martino, V.S.; Frank, F.M.; Lombardo, M.E.
Filiación:Cátedra de Farmacognosia, Instituto de Químicay Metabolismo Del Fármaco, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmaciay Bioquímica, Buenos Aires, Argentina
Centrode Investigaciones Sobre Porfirinasy Porfirias, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
Cátedra de Inmunología, Facultad de Farmaciay Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
Institutode Microbiologíay Parasitología Médica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:cruzipain; hemin; lipocortin 5; phosphatidylserine; propidium iodide; psilostachyin; psilostachyin C; reactive oxygen metabolite; sesquiterpene lactone derivative; squalene; sterol; trypanothione reductase; unclassified drug; fused heterocyclic rings; hemin; lactone; plant extract; psilostachyin A; psilostachyin C; pyrone derivative; reactive oxygen metabolite; sesquiterpene; Ambrosia scabra; Ambrosia tenuifolia; apoptosis; Article; bacterium isolation; biosynthesis; cell death; controlled study; drug activity; drug isolation; drug protein binding; mitochondrial membrane potential; nonhuman; oxidative stress; ragweed; structure analysis; Trypanosoma cruzi; TUNEL assay; Chagas disease; chemistry; drug effects; human; metabolism; parasitology; pathogenicity; Trypanosoma cruzi; Ambrosia; Apoptosis; Chagas Disease; Hemin; Heterocyclic Compounds, 3-Ring; Humans; Lactones; Plant Extracts; Pyrones; Reactive Oxygen Species; Sesquiterpenes; Trypanosoma cruzi
Año:2016
Volumen:11
Número:3
DOI: http://dx.doi.org/10.1371/journal.pone.0150526
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:cruzipain; hemin, 16009-13-5; lipocortin 5, 111237-10-6; propidium iodide, 25535-16-4; squalene, 111-02-4, 7683-64-9; trypanothione reductase, 102210-35-5; lactone, 1338-03-0; Hemin; Heterocyclic Compounds, 3-Ring; Lactones; Plant Extracts; psilostachyin A; psilostachyin C; Pyrones; Reactive Oxygen Species; Sesquiterpenes
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v11_n3_p_Sulsen

Referencias:

  • (2014) Chagas Disease (American Trypanosomiasis)., , Fact sheet N° 340. Geneva, Switzerland
  • Securing access to current treatments while researching better options (2015) DNDi Chagas Disease Fact-sheet, , http://www.dndi.org/images/stories/pdfpublications/DNDiChagasfactsheet.pdf, Chagas Disease American tripanosomiasis
  • Maya, J.D., Cassels, B.K., Iturriaga-Vásquez, P., Ferreira, J., Faúndez, M., Galanti, N., Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host (2007) Comp Biochem Physiol. A., 146, pp. 601-620
  • Cragg, G.M., Grothaus, P.G., Newman, D.J., New horizons for old drugs and drug leads (2014) J Nat Prod., 77, pp. 703-723. , PMID: 24499205
  • Silva, G.N., Rezende, L.C., Emery, F.S., Gosmann, G., Gnoatto, S.C., Natural and semi synthetic antimalarial compounds: Emphasis on the terpene class (2015) Mini RevMedChem., 15, pp. 809-836. , PMID: 25553426
  • Chadwick, M., Trewin, H., Gawthrop, F., Waqstaff, C., Sesquiterpenoids lactones: Benefits to plants and people (2013) Int J Mol Sci., 14, pp. 12780-12805. , PMID: 23783276
  • Polonio, T., Efferth, T., Leishmaniasis: Drug resistance and natural products (2008) Int J Mol Med., 22, pp. 277-286. , PMID: 18698485
  • Salem, M.M., Werbovetz, K.A., Natural products from plants as drug candidates and lead compounds against leishmaniasis and trypanosomiasis (2006) CurrMedChem., 13, pp. 2571-2598. , PMID: 17017912
  • Schmidt, T.J., Khalid, S.A., Romanha, A.J., Alves, T.M., Biavatti, M.W., Brun, R., The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-part i (2012) Curr Med Chem., 19, pp. 2128-2175. , PMID: 22414103
  • Barrera, P., Sülsen, V.P., Lozano, E., Rivera, M., Beer, M.F., Tonn, C., Natural sesquiterpene lactones induce oxidative stress in Leishmania mexicana (2013) Evid Based Complement Alternat Med., 6p. , Article ID 163404
  • Sülsen, V.P., Frank, F.M., Cazorla, S.I., Anesini, C.A., Malchiodi, E.L., Freixa, B., Trypanocidal and leishma-nicidal activities of sesquiterpene lactones fromAmbrosia tenuifolia Sprengel (Asteraceae) (2008) Antimicrob Agents Chemother., 52, pp. 2415-2419. , PMID: 18443111
  • Sülsen, V., Barrera, P., Muschietti, L., Martino, V., Sosa, M., Antiproliferative effect and ultrastructural alterations induced by psilostachyin on Trypanosoma cruzi (2010) Molecules., 15, pp. 545-553. , PMID: 20110908
  • Sülsen, V., Gutierrez Yappu, D., Laurella, L., Anesini, C., GimenezTurba, A., Martino, V., In vitro antiplas-modial activity of sesquiterpene lactones from Ambrosia tenuifolia (2011) Evid Based Complement Alternat Med., 4p. , Article ID 352938
  • Sülsen, V.P., Frank, F.M., Cazorla, S.I., Barrera, P., Freixa, B., Vila, R., Psilostachyin C: A natural compound with trypanocidal activity (2011) Int. J Antimicrob Agents., 37, pp. 536-543. , PMID: 21497061
  • Taylor, D.K., Avery, T.D., Greatrex, B.W., Tiekink, E.R., MacReadie, I.G., MacReadie, P.I., Novel endoperoxide antimalarials: Synthesis, heme binding, and antimalarial activity (2004) J MedChem., 47, pp. 1833-1839. , PMID: 15027875
  • Labriola, C., Sousa, M., Cazzulo, J.J., Purification of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi by affinity chromatography (1993) Bio Res., 26, pp. 101-107
  • Caputto, M.E., Ciccarelli, A., Frank, F., Moglioni, A.G., Moltrasio, G.Y., Vega, D., Synthesis and biological evaluation of some novel 1-indanone thiazolylhydrazone derivatives as anti-Trypanosoma cruzi agents (2012) Eur J MedChem., 55, pp. 155-163. , PMID: 22840495
  • Ciccarelli, A., Araujo, L., Batlle, A., Lombardo, E., Effect of haemin on growth, protein content and the antioxidant defense system in Trypanosoma cruzi (2007) Parasitol., 134, pp. 959-965
  • Ariyanayagam, M., Fairlamb, A., Ovothiol and trypanothione as antioxidants in Trypanosomatids (2001) Mol Bio-chem Parasitol., 115, pp. 189-198. , PMID: 11420105
  • Ciccarelli, A.B., Frank, F.M., Puente, V., Malchiodi, E.L., Batlle, A., Lombardo, M.E., Anti-parasitic effect of vitamin B12on Trypanosoma cruzi (2012) Antimicrob Agents Chemother., 56, pp. 5315-5320. , PMID: 22869565
  • Frank, F.M., Ciccarelli, A.B., Bollini, M., Bruno, A.M., Batlle, A., Lombardo, M.E., Trypanocidal activity of thioa-mide-substituted imidazoquinolinone: Electrochemical properties and biological effects (2013) Evid Based Complement Alternat Med., 10p. , Article ID 945953
  • Menna-Barreto, R.F., Henriques-Pons, A., Pinto, A.V., Morgado-Diaz, J.A., Soares, M.J., De Castro, S.L., Effect of a beta-lapachone-derived naphthoimidazole on Trypanosoma cruzi: Identification of target organelles (2005) J Antimicrob Chemother., 56, pp. 1034-1041. , PMID: 16269551
  • Papademetrio, D.L., Cavaliere, V., Simunovich, T., Costantino, S., Lombardo, T., Colombo, M.I., Interplay between autophagy and apoptosis in pancreatic tumors in response to gemcitabine (2014) Target Oncol., 9, pp. 123-134. , PMID: 23588416
  • Odds, F.C., Synergy, antagonism, and what the chequerboard puts between them (2003) J Antimicrob Chemother., 52, p. 1. , PMID: 12805255
  • Duschak, V.G., Couto, A.S., Cruzipain, the major cysteine protease of Trypanosoma cruzi: A sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review (2009) CurrMed Chem., 16, pp. 3174-3202. , PMID: 19689291
  • Leroux, A.E., Krauth-Siegel, R.L., Thiol redox biology of trypanosomatids and potential targets for chemotherapy (2015) Mol Biochem Parasitol.
  • Zimmermann, S., Oufir, M., Leroux, A., Krauth-Siegel, R.L., Becker, K., Kaiser, M., Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei (2013) Bioorg MedChem., 21, pp. 7202-7209. , PMID: 24080104

Citas:

---------- APA ----------
Sülsen, V.P., Puente, V., Papademetrio, D., Batlle, A., Martino, V.S., Frank, F.M. & Lombardo, M.E. (2016) . Mode of action of the sesquiterpene lactones psilostachyin and psilostachyin C on trypanosoma cruzi. PLoS ONE, 11(3).
http://dx.doi.org/10.1371/journal.pone.0150526
---------- CHICAGO ----------
Sülsen, V.P., Puente, V., Papademetrio, D., Batlle, A., Martino, V.S., Frank, F.M., et al. "Mode of action of the sesquiterpene lactones psilostachyin and psilostachyin C on trypanosoma cruzi" . PLoS ONE 11, no. 3 (2016).
http://dx.doi.org/10.1371/journal.pone.0150526
---------- MLA ----------
Sülsen, V.P., Puente, V., Papademetrio, D., Batlle, A., Martino, V.S., Frank, F.M., et al. "Mode of action of the sesquiterpene lactones psilostachyin and psilostachyin C on trypanosoma cruzi" . PLoS ONE, vol. 11, no. 3, 2016.
http://dx.doi.org/10.1371/journal.pone.0150526
---------- VANCOUVER ----------
Sülsen, V.P., Puente, V., Papademetrio, D., Batlle, A., Martino, V.S., Frank, F.M., et al. Mode of action of the sesquiterpene lactones psilostachyin and psilostachyin C on trypanosoma cruzi. PLoS ONE. 2016;11(3).
http://dx.doi.org/10.1371/journal.pone.0150526