Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Disordered regions and Intrinsically Disordered Proteins (IDPs) are involved in critical cellular processes and may acquire a stable three-dimensional structure only upon binding to their partners. IDPs may follow a folding-after-binding process, known as induced folding, or a folding-before-binding process, known as conformational selection. The transcription factor p53 is involved in the regulation of cellular events that arise upon stress or DNA damage. The p53 domain structure is composed of an N-terminal transactivation domain (p53TAD), a DNA Binding Domain and a tetramerization domain. The activity of TAD is tightly regulated by interactions with cofactors, inhibitors and phosphorylation. To initiate transcription, p53TAD binds to the TAZ2 domain of CBP, a co-transcription factor, and undergoes a folding and binding process, as revealed by the recent NMR structure of the complex. The activity of p53 is regulated by phosphorylation at multiple sites on the TAD domain and recent studies have shown that modifications at three residues affect the binding towards TAZ2. However, we still do not know how these phosphorylations affect the structure of the bound state and, therefore, how they regulate the p53 function. In this work, we have used computational simulations to understand how phosphorylation affects the structure of the p53TAD: TAZ2 complex and regulates the recognition mechanism. Phosphorylation has been proposed to enhance binding by direct interaction with the folded protein or by changing the unbound conformation of IDPs, for example by pre-folding the protein favoring the recognition mechanism. Here, we show an interesting turn in the p53 case: phosphorylation mainly affects the bound structure of p53TAD, highlighting the complexity of IDP protein-protein interactions. Our results are in agreement with previous experimental studies, allowing a clear picture of how p53 is regulated by phosphorylation and giving new insights into how post-translational modifications can regulate the function of IDPs. © 2016 Ithuralde, Turjanski. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Phosphorylation regulates the bound structure of an intrinsically disordered protein: The p53-TAZ2 case
Autor:Ithuralde, R.E.; Turjanski, A.G.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Departamento de Química Biológica, Facultad de Ciencias Exacas, Naturales-Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
INQUIMAE-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Ciudad de Buenos Aires, Argentina
Palabras clave:intrinsically disordered protein; protein p53; bone sialoprotein (35-62), human; intrinsically disordered protein; peptide fragment; protein binding; protein p53; sialoglycoprotein; Article; binding affinity; binding site; complex formation; controlled study; molecular recognition; protein binding; protein determination; protein folding; protein phosphorylation; protein processing; protein protein interaction; structure analysis; chemistry; genetic transcription; genetics; human; metabolism; molecular dynamics; molecular genetics; phosphorylation; protein motif; protein processing; protein secondary structure; protein tertiary structure; Amino Acid Motifs; Binding Sites; Humans; Intrinsically Disordered Proteins; Molecular Dynamics Simulation; Molecular Sequence Data; Peptide Fragments; Phosphorylation; Protein Binding; Protein Folding; Protein Processing, Post-Translational; Protein Structure, Secondary; Protein Structure, Tertiary; Sialoglycoproteins; Transcription, Genetic; Tumor Suppressor Protein p53
Año:2016
Volumen:11
Número:1
DOI: http://dx.doi.org/10.1371/journal.pone.0144284
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:bone sialoprotein (35-62), human; Intrinsically Disordered Proteins; Peptide Fragments; Sialoglycoproteins; Tumor Suppressor Protein p53
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v11_n1_p_Ithuralde

Referencias:

  • Tantos, A., Han, K.H., Tompa, P., Intrinsic disorder in cell signaling and gene transcription Molecular and Cellular Endocrinology, 348, pp. 457-465. , 21782886
  • Turjanski, A.G., Gutkind, J.S., Best, R.B., Hummer, G., Binding-induced folding of a natively unstructured transcription factor (2008) PLoS Computational Biology., 4, p. e1000060. , 18404207
  • Ganguly, D., Chen, J., Topology-based modeling of intrinsically disordered proteins: Balancing intrinsic folding and intermolecular interactions (2011) Proteins, 79, pp. 1251-1266. , 21268115
  • Huang, Y., Liu, Z., Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process: A critical assessment of the "fly-casting" mechanism (2009) Journal of Molecular Biology, 393, pp. 1143-1159. , 19747922
  • Sugase, K., Dyson, H.J., Wright, P.E., Mechanism of coupled folding and binding of an intrinsically disordered protein (2007) Nature, 447, pp. 1021-1025. , 17522630
  • Wells, M., Tidow, H., Rutherford, T.J., Markwick, P., Jensen, M.R., Mylonas, E., Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 5762-5767. , 18391200
  • Wright, P.E., Dyson, H., Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm (1999) Journal of Molecular Biology, 293, pp. 321-331. , 10550212
  • Dey, A., Verma, C.S., Lane, D.P., Updates on p53: Modulation of p53 degradation as a therapeutic approach (2008) British Journal of Cancer, 98, pp. 4-8. , 18182973
  • Kovacs, D., Szabo, B., Pancsa, R., Tompa, P., Intrinsically disordered proteins undergo and assist folding transitions in the proteome (2013) Archives of Biochemistry and Biophysics, 539, pp. 80-89
  • Zhang, H.G., Wang, J., Yang, X., Hsu, H.C., Mountz, J.D., Regulation of apoptosis proteins in cancer cells by ubiquitin (2004) Oncogene, 23, pp. 2009-2015. , 15021888
  • Bieging, K.T., Attardi, L.D., Deconstructing p53 transcriptional networks in tumor suppression (2012) Trends in Cell Biology, 22, pp. 97-106. , 22154076
  • Suganuma, T., Ikeda, M.A., Tumor Growth Suppression by the Coactivator p300 (2008) Journal of Oral Biosciences, 50 (2), pp. 115-124
  • Cook, P.R., Polakowski, N., Lemasson, I., HTLV-1 HBZ protein deregulates interactions between cellular factors and the KIX domain of p300/CBP (2011) Journal of Molecular Biology, 409, pp. 384-398. , 21497608
  • Feng, H., Jenkins, L.M., Durell, S.R., Hayashi, R., Mazur, S.J., Cherry, S., Structural basis for p300 TAZ2-p53 TAD1 binding and modulation by phosphorylation (2009) Structure, 17, pp. 202-210. , 19217391
  • De Guzman, R.N., Liu, H.Y., Martinez-Yamout, M., Dyson, H.J., Wright, P.E., Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP (2000) Journal of Molecular Biology, 303, pp. 243-253. , 11023789
  • Mavinahalli, J.N., Madhumalar, A., Beuerman, R.W., Lane, D.P., Verma, C., Differences in the transactivation domains of p53 family members: A computational study (2010) BMC Genomics, 11, p. S5. , 20158876
  • Lum, J.K., Neuweiler, H., Fersht, A.R., Long-range modulation of chain motions within the intrinsically disordered transactivation domain of tumor suppressor p53 (2012) Journal of the American Chemical Society, 134, pp. 1617-1622. , 22176582
  • Lee, C.W., Ferreon, J.C., Ferreon, A.C.M., Arai, M., Wright, P.E., Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 19290-19295. , 20962272
  • Schafmeister, C.E.A.F., Ross, W.S., Romanovski, V., (1995) LEAP, , University of California, San Francisco
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved (2006) Proteins, 65, pp. 712-725. , 16981200
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J., Dror, R.O., Improved side-chain torsion potentials for the Amber ff99SB protein force field (2010) Proteins, 78, pp. 1950-1958. , 20408171
  • Pang, Y.P., Novel zinc protein molecular dynamics simulations: Steps toward antiangiogenesis for cancer treatment (1999) Journal of Molecular Modeling, 5, pp. 196-202
  • Pang, Y.P., Xu, K., El Yazal, J., Prendergast, F.G., Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach (2000) Protein Science, 9, pp. 1857-1865. , 11106157
  • Homeyer, N., Horn, A.H.C., Lanig, H., Sticht, H., AMBER force field parameters for phosphorylated amino acids in different protonation states: Phosphoserine, phosphothreonine, phosphotyrosine and phosphohistidine (2006) Journal of Molecular Modeling, 12, pp. 281-289. , 16240095
  • Mobley, D.L., Chodera, J.D., Dill, K.A., On the use of orientational restraints and symmetry number corrections in alchemical free energy calculations (2006) Journal of Chemical Physics, 125, p. 084902. , 16965052
  • Bekker, H., Berendsen, H.J.C., Dijkstra, E.J., Achterop, S., Van Drunen, R., Van Der Spoel, D., Gromacs: A parallel computer for molecular dynamics simulations (1993) Proceedings of the 4th International Conference Physics Computing, 92, pp. 252-256
  • Berendsen, H.J.C., Van Der Spoel, D., Van Drunen, R., GROMACS: A message-passing parallel molecular dynamics implementation (1995) Computer Physics Communications, 91, pp. 43-56
  • Lindahl, E., Hess, B., Van Der Spoel, D., GROMACS 3.0: A package for molecular simulation and trajectory analysis (2011) Journal of Molecular Modeling, 7, pp. 306-317
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C., GROMACS: Fast, flexible and free (2005) Journal of Computational Chemistry, 26, pp. 1701-1718. , 16211538
  • Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E., GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation (2008) Journal of Chemical Theory and Computation, 4, pp. 435-447. , 26620784
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) Journal of Chemical Physics, 79, pp. 926-935
  • Darden, T., York, D., Pedersen, L., Particle mesh ewald: An N•log (N) method for ewald sums in large systems (1993) Journal of Chemical Physics, 98, pp. 10089-10092
  • Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G., A smooth particle mesh ewald potential (1995) Journal of Chemical Physics, 103, pp. 8577-8592
  • Berendsen, H.J.C., Transport properties computed by linear response through weak coupling to a bath (1991) Computer Simulations in Material Science, pp. 139-155. , Meyer M., Pontikis V. eds, Kluwer
  • Berendsen, H.J.C., Postma, J.P.M., DiNola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) Journal of Chemical Physics, 81, pp. 3684-3690
  • Bussi, G., Donadio, D., Parrinello, M., Canonical sampling through velocity rescaling (2007) Journal of Chemical Physics, 126, p. 014101. , 17212484
  • Parrinello, M., Rahman, A., Polymorphic transitions in single crystals: A new molecular dynamics method (1981) Journal of Applied Physics, 52, pp. 7182-7190
  • Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., LINCS: A linear constraint solver for molecular simulations (1997) Journal of Computational Chemistry, 18, pp. 1463-1472
  • Stricher, F., Lenaerts, T., Schymkowitz, J., Rousseau, F., Serrano, L., (2008) FoldX 3.0, , "In preparation"
  • Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., Serrano, L., The fold X web server: An online force field (2005) Nucleic Acids Research, 33, pp. 382-388
  • Schymkowitz, J.W., Rousseau, F., Martins, I.C., Ferkinghoff-Borg, J., Stricher, F., Serrano, L., Prediction of water and metal binding sites and their affinities by using the Fold-X force field (2005) Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 10147-10152. , 16006526
  • Guerois, R., Nielsen, J.E., Serrano, L., Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations (2002) Journal of Molecular Biology, 320, pp. 369-387. , 12079393
  • Humphrey, W., Dalke, A., Schulten, K., VMD-visual molecular dynamics (1996) Journal of Molecular Graphics, 14, pp. 33-38. , http://www.ks.uiuc.edu/Research/vmd, 8744570 8744570
  • Kabsch, W., Sander, C., Dictionary of protein secondary structure: Pattern recognition of hydrogenbonded and geometrical features (1983) Biopolymers, 22, pp. 2577-2637. , 6667333
  • Roe, D.R., Cheatham, T.E., III, PTRAJ and CPPTRAJ: Software forprocessing and analysis of molecular dynamics trajectory data (2013) Journal of ChemicalTheory and Computation, 9 (7), pp. 3084-3095
  • Dogan, J., Gianni, S., Jemth, P., The binding mechanisms of intrinsically disordered proteins (2014) Physical Chemistry Chemical Physics, 16 (14), pp. 6323-6331. , 24317797
  • Hatzakis, N.S., Single molecule insights on conformational selection and induced fit mechanism (2014) Biophysical Chemistry, 186, pp. 46-54. , 24342874
  • Cortese, M.S., Uversky, V.N., Dunker, A.K., Intrinsic disorder in scaffold proteins: Getting more from less (2008) Progress in Biophysics and Molecular Biology, 98 (1), pp. 85-106. , 18619997
  • Uversky, V.N., Dunker, A.K., Understanding protein non-folding (2010) Biochimica et Biophysica Acta (BBA)-proteins and Proteomics, 1804 (6), pp. 1231-1264
  • Sigler, P.B., Transcriptional activation. Acid blots and negative noodles (1988) Nature, 333, pp. 210-212. , 3367995
  • Iakoucheva, L.M., Radivojac, P., Brown, C.J., O'Connor, T.R., Sikes, J.G., Obradovic, Z., The importance of intrinsic disorder for protein phosphorylation (2004) Nucleic Acids Research, 32 (3), pp. 1037-1049. , 14960716
  • Ferreon, J.C., Lee, C.W., Arai, M., Martinez-Yamout, M.A., Dyson, H.J., Wright, P.E., Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2 (2009) Proceedings of the National Academy of Sciences of the United States of America, 106 (16), pp. 6591-6596. , 19357310
  • Dastidar, S.G., Lane, D.P., Verma, C.S., Multiple peptide conformations give rise to similar binding affinities: Molecular simulations of p53-MDM2 (2008) Journal of the American Chemical Society, 130 (48), pp. 13514-13515
  • Jenkins, L.M., Yamaguchi, H., Hayashi, R., Cherry, S., Tropea, J.E., Miller, M., Two distinct motifs within the p53 transactivation domain bind to the TAZ2 domain of p300 and are differentially affected by phosphorylation (2009) Biochemistry, 48 (6), pp. 1244-1255. , 19166313

Citas:

---------- APA ----------
Ithuralde, R.E. & Turjanski, A.G. (2016) . Phosphorylation regulates the bound structure of an intrinsically disordered protein: The p53-TAZ2 case. PLoS ONE, 11(1).
http://dx.doi.org/10.1371/journal.pone.0144284
---------- CHICAGO ----------
Ithuralde, R.E., Turjanski, A.G. "Phosphorylation regulates the bound structure of an intrinsically disordered protein: The p53-TAZ2 case" . PLoS ONE 11, no. 1 (2016).
http://dx.doi.org/10.1371/journal.pone.0144284
---------- MLA ----------
Ithuralde, R.E., Turjanski, A.G. "Phosphorylation regulates the bound structure of an intrinsically disordered protein: The p53-TAZ2 case" . PLoS ONE, vol. 11, no. 1, 2016.
http://dx.doi.org/10.1371/journal.pone.0144284
---------- VANCOUVER ----------
Ithuralde, R.E., Turjanski, A.G. Phosphorylation regulates the bound structure of an intrinsically disordered protein: The p53-TAZ2 case. PLoS ONE. 2016;11(1).
http://dx.doi.org/10.1371/journal.pone.0144284