Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Metallic nanoparticles (NPs) are able to modify the excitation and emission rates (plasmonic enhancement) of fluorescent molecules in their close proximity. In this work, we measured the emission spectra of 20 nm Gold Nanoparticles (AuNPs) fixed on a glass surface submerged in a solution of different fluorophores using a spectral camera and 2-photon excitation. While on the glass surface, we observed the presence in the emission at least 3 components: i) second harmonic signal (SHG), ii) a broad emission from AuNPS and iii) fluorescence arising from fluorophores nearby. When on the glass surface, we found that the 3 spectral components have different relative intensities when the incident direction of linear polarization was changed indicating different physical origins for these components. Then we measured by fluctuation correlation spectroscopy (FCS) the scattering and fluorescence signal of the particles alone and in a solution of 100 nM EGFP using the spectral camera or measuring the scattering and fluorescence from the particles. We observed occasional fluorescence bursts when in the suspension we added fluorescent proteins. The spectrum of these burst was devoid of the SHG and of the broad emission in contrast to the signal collected from the gold nanoparticles on the glass surface. Instead we found that the spectrum during the burst corresponded closely to the spectrum of the fluorescent protein. An additional control was obtained by measuring the cross-correlation between the reflection from the particles and the fluorescence arising from EGFP both excited at 488 nm. We found a very weak cross-correlation between the AuNPs and the fluorescence confirming that the burst originate from a few particles with a fluorescence signal. © 2015 Anzalone et al.

Registro:

Documento: Artículo
Título:Spectral properties of single gold nanoparticles in close proximity to biological fluorophores excited by 2-photon excitation
Autor:Anzalone, A.; Gabriel, M.; Estrada, L.C.; Gratton, E.
Filiación:Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States
Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
Departamento de Física, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Departamento de Física, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:enhanced green fluorescent protein; glass; gold nanoparticle; fluorescent dye; gold; metal nanoparticle; Article; controlled study; fluctuation correlation spectroscopy; fluorescence; light scattering; particle size; spectroscopy; suspension; chemistry; photon; procedures; spectrofluorometry; Fluorescent Dyes; Gold; Metal Nanoparticles; Photons; Spectrometry, Fluorescence
Año:2015
Volumen:10
Número:4
DOI: http://dx.doi.org/10.1371/journal.pone.0124975
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:gold, 7440-57-5; Fluorescent Dyes; Gold
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v10_n4_p_Anzalone

Referencias:

  • Fernandez-Suarez, M., Ting, A.Y., Fluorescent probes for super-resolution imaging in living cells (2008) Nat Rev Mol Cell Biol, 9 (12), pp. 929-943. , PMID: 19002208
  • Lippincott-Schwartz, J., Patterson, G.H., Development and use of fluorescent protein markers in living cells (2003) Science, 300 (5616), pp. 87-91. , PMID: 12677058
  • Lippincott-Schwartz, J., Altan-Bonnet, N., Patterson, G.H., Photobleaching and photoactivation: Following protein dynamics in living cells (2003) Nat Cell Biol, pp. S7-S14. , PMID: 14562845
  • Vogelsang, J., Kasper, R., Steinhauer, C., Person, B., Heilemann, M., Sauer, M., A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes (2008) Angew Chem Int Ed Engl, 47 (29), pp. 5465-5469. , PMID: 18601270
  • Tam, F., Goodrich, G.P., Johnson, B.R., Halas, N.J., Plasmonic enhancement of molecular fluorescence (2007) Nano Letters, 7 (2), pp. 496-501. , PMID: 17256995
  • Aslan, K., Lakowicz, J.R., Geddes, C.D., Plasmon light scattering in biology and medicine: New sensing approaches, visions and perspectives (2005) Curr Opin Chem Biol, 9 (5), pp. 538-544. , PMID: 16129649
  • Eustis, S., El-Sayed, M.A., Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes (2006) Chem Soc Rev, 35 (3), pp. 209-217. , PMID: 16505915
  • Estrada, L.C., Aramendia, P.F., Martinez, O.E., 10000 Times volume reduction for fluorescence correlation spectroscopy using nano-antennas (2008) Optics Express, 16 (25), pp. 20597-20602. , PMID: 19065198
  • Estrada, L.C., Roberti, M.J., Simoncelli, S., Levi, V., Aramendia, P.F., Martinez, O.E., Detection of low quantum yield fluorophores and improved imaging times using metallic nanoparticles (2012) The Journal of Physical Chemistry B, 116 (7), pp. 2306-2313. , PMID: 22235949
  • Estrada, L.C., Gratton, E., 3D nanometer images of biological fibers by directed motion of gold nanoparticles (2011) Nano Letters, 11 (11), pp. 4656-4660. , PMID: 21919444; PubMed Central PMCID: PMC3220937
  • Estrada, L.C., Gratton, E., Spectroscopic properties of gold nanoparticles at the single-particle level in biological environments (2012) Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 13 (4), pp. 1087-1092. , PMID: 22298327; PubMed Central PMCID: PMC4245151
  • Kis-Petikova, K., Gratton, E., Distance measurement by circular scanning of the excitation beam in the two-photon microscope (2004) Microsc Res Tech, 63 (1), pp. 34-49. , PMID: 14677132
  • Levi, V., Gratton, E., Exploring dynamics in living cells by tracking single particles (2007) Cell Biochem Biophys, 48 (1), pp. 1-15. , PMID: 17703064
  • Levi, V., Gratton, E., Chromatin dynamics during interphase explored by single-particle tracking (2008) Chromosome Res, 16 (3), pp. 439-449. , PMID: 18461483; PubMed Central PMCID: PMC2701671
  • Anzalone, A., Annibale, P., Gratton, E., 3D Orbital Tracking in a Modified Two-photon Microscope: An Application to the Tracking of Intracellular Vesicles (2014) J Vis Exp, (92). , PMID: 25350070
  • Fu, C.-C., Ossato, G., Long, M., Digman, M.A., Gopinathan, A., Lee, L.P., Bimetallic nanopetals for thousand-fold fluorescence enhancements (2010) Applied Physics Letters, 97 (20)
  • Biswas, A., Wang, T., Biris, A.S., Single metal nanoparticle spectroscopy: Optical characterization of individual nanosystems for biomedical applications (2010) Nanoscale, 2 (9), pp. 1560-1572. , PMID: 20661516

Citas:

---------- APA ----------
Anzalone, A., Gabriel, M., Estrada, L.C. & Gratton, E. (2015) . Spectral properties of single gold nanoparticles in close proximity to biological fluorophores excited by 2-photon excitation. PLoS ONE, 10(4).
http://dx.doi.org/10.1371/journal.pone.0124975
---------- CHICAGO ----------
Anzalone, A., Gabriel, M., Estrada, L.C., Gratton, E. "Spectral properties of single gold nanoparticles in close proximity to biological fluorophores excited by 2-photon excitation" . PLoS ONE 10, no. 4 (2015).
http://dx.doi.org/10.1371/journal.pone.0124975
---------- MLA ----------
Anzalone, A., Gabriel, M., Estrada, L.C., Gratton, E. "Spectral properties of single gold nanoparticles in close proximity to biological fluorophores excited by 2-photon excitation" . PLoS ONE, vol. 10, no. 4, 2015.
http://dx.doi.org/10.1371/journal.pone.0124975
---------- VANCOUVER ----------
Anzalone, A., Gabriel, M., Estrada, L.C., Gratton, E. Spectral properties of single gold nanoparticles in close proximity to biological fluorophores excited by 2-photon excitation. PLoS ONE. 2015;10(4).
http://dx.doi.org/10.1371/journal.pone.0124975