Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. © 2015 Ruiz et al.

Registro:

Documento: Artículo
Título:Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5
Autor:Ruiz, J.A.; Bernar, E.M.; Jung, K.
Filiación:Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Ludwig-Maximilians-Universität München, Munich Center for Integrated Protein Science (CiPSM), Department of Biology I, Martinsried, Germany
Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Departamento de Química Biológica, Instituto de Bioquímica y Biofísica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:copper ion; enantio pyochelin; ferric ion; ferrous ion; fusaric acid; manganese; microbial products not classified elsewhere; multidrug resistance protein; pyoverdine; siderophore; unclassified drug; zinc ion; bacterial protein; fusaric acid; ion; iron; metal; oligopeptide; pyoverdine; siderophore; antibacterial activity; antibiotic resistance; Article; bacterial gene; bacterial growth; bacterial secretion system; bacterial strain; bacterial survival; bacterium culture; bacterium mutant; binding affinity; binding kinetics; biofilm; biosynthesis; cell motility; concentration response; controlled study; drug binding; fus gene; gene expression; growth inhibition; minimum inhibitory concentration; nonhuman; protein expression; Pseudomonas; Pseudomonas protegens; spectrophotometry; wild type; chemistry; drug effects; growth, development and aging; metabolism; physiology; Pseudomonas; spectrofluorometry; Bacteria (microorganisms); Fungi; Fusarium; Pseudomonas; Pseudomonas fluorescens group; Rhizobiales; Bacterial Proteins; Biofilms; Fusaric Acid; Ions; Iron; Metals; Oligopeptides; Pseudomonas; Siderophores; Spectrometry, Fluorescence
Año:2015
Volumen:10
Número:1
DOI: http://dx.doi.org/10.1371/journal.pone.0117040
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:ferric ion, 20074-52-6; ferrous ion, 15438-31-0; fusaric acid, 536-69-6; manganese, 16397-91-4, 7439-96-5; multidrug resistance protein, 149200-37-3, 208997-77-7; pyoverdine, 8062-00-8; zinc ion, 23713-49-7; iron, 14093-02-8, 53858-86-9, 7439-89-6; Bacterial Proteins; Fusaric Acid; Ions; Iron; Metals; Oligopeptides; pyoverdin; Siderophores
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v10_n1_p_Ruiz

Referencias:

  • Capasso, R., Evidente, A., Cutignano, M., Vurro, M., Zonno, M.C., Fusaric acid and 9,10-dehydrofusaric acids and their methyl esters from Fusarium nygamai (1996) Phytochemistry, 41, pp. 1035-1039
  • Gapillout, I., Milat, M.L., Blein, J.P., Effects of fusaric acid on cells from tomato cultivars resistant or susceptible to Fusarium oxysporum f. sp. lycopersici (1996) Eur J Plant Pathol, 102, pp. 127-132
  • Mégnégneau, B., Branchard, M., Toxicity of fusaric acid observed on callus cultures of various Cucumis melo genotypes (1988) Plant Physiol Biochem, 26, pp. 585-588
  • Lori, G.A., Sisterna, M.N., Haidukowski, M., Rizzo, I., Fusarium graminearum and deoxynivalenol contamination in the durum wheat area of Argentina (2003) Microbiol Res, 158, pp. 29-35. , PMID: 12608577
  • Di Pietro, A., Madrid, M.P., Caracuel, Z., Delgado-Jarana, J., Roncero, M.I.G., Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt pathogen (2003) Mol Plant Pathol, 4, pp. 315-325
  • Pioli, R.N., Mozzoni, L., Morandi, E.N., First report about pathogenic association between F. graminearum and Soybean (2004) Plant Disease Note, 88, p. 220
  • Reynoso, M.M., Chulse, S.N., Zeller, K.A., Torres, A.M., Leslie, J.L., Genetic structure of Fusarium verticilloides populations isolated from maize in Argentina (2009) Eur J Plant Pathol, 123, pp. 207-215
  • Stenglein, S.A., Fusarium poae: A pathogen that needs more attention (2009) J Plant Pathol, 91, pp. 25-36
  • Stenglein, S.A., Barreto, D., Nicholson, P., Chandler, E., Brambilla, V., First report of Fusarium poae on tomato in Argentina (2009) Plant Pathol, 58, p. 401
  • De Weert, S., Kuiper, I., Lagendijk, E.L., Lamers, G.E., Lugtenberg, B.J., Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365 (2004) Mol Plant Microbe Interact, 17, pp. 1185-1191. , PMID: 15553244
  • Chin-A-Woeng, T.F.C., Bloemberg, G.V., VD Bij, A.J., VD Drift, K.M.G.M., Schripsema, J., Biocontrol by Phenazine-1-carboxamide-Producing Pseudomonas chlororaphis PCL1391 of Tomato Root Rot Caused by Fusarium oxysporum f. sp. radicis-lycopersici (1998) Mol Plant Microbe Interact, 11, pp. 1069-1077
  • Duffy, B., Keel, C., Defago, G., Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection (2004) Appl Environ Microbiol, 70, pp. 1836-1842. , PMID: 15006813
  • Saikia, R., Varghese, S., Singh, B.P., Arora, D.K., Influence of mineral amendment on disease suppressive activity of Pseudomonas fluorescens to Fusarium wilt of chickpea (2009) Microbiol Res, 164, pp. 365-373. , PMID: 17604612
  • Haas, D., Defago, G., Biological control of soil-borne pathogens by fluorescent pseudomonads (2005) Nat Rev Microbiol, 3, pp. 307-319. , PMID: 15759041
  • Van Rij, E.T., Wesselink, M., Awtf, C., Bloemberg, G.V., Lugtenberg, B.J., Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391 (2004) Mol Plant Microbe Interact, 17, pp. 557-566. , PMID: 15141960
  • Van Rij, E.T., Girard, G., Lugtenberg, B.J., Bloemberg, G.V., Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391 (2005) Microbiology, 151, pp. 2805-2814. , PMID: 16079356
  • Notz, R., Maurhofer, M., Dubach, H., Haas, D., Defago, G., Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat (2002) Appl Environ Microbiol, 68, pp. 2229-2235. , PMID: 11976092
  • Bacon, C.W., Hinton, D.M., Hinton, A., Jr., Growth-inhibiting effects of concentrations of fusaric acid on the growth of Bacillus mojavensis and other biocontrol Bacillus species (2006) J Appl Microbiol, 100, pp. 185-194. , PMID: 16405699
  • Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J., Schweizer, H.P., A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants (1998) Gene, 212, pp. 77-86. , PMID: 9661666
  • Choi, K.H., Schweizer, H.P., An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants (2005) BMC Microbiol, 5, p. 30. , PMID: 15907219
  • Lassak, J., Henche, A.L., Binnenkade, L., Thormann, K., ArcS, the Cognate Sensor Kinase in an Atypical Arc System of Shewanella oneidensis MR-1 (2010) Appl Environ Microbiol, 76, pp. 3263-3274. , PMID: 20348304
  • Lageveen, R., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., Formation of polyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates (1988) Appl Environ Microbiol, 54, pp. 2924-2932. , PMID: 16347790
  • King, E.O., Ward, M.K., Raney, D.E., Two simple media for the demonstration of pyocianin and fluorescein (1954) J Lab Clin Med, 44, pp. 301-307. , PMID: 13184240
  • Gross, H., Stockwell, V.O., Henkels, M.D., Nowak-Thompson, B., Loper, J.E., The Genomisotopic Approach: A Systematic Method to Isolate Products of Orphan Biosynthetic Gene Clusters (2007) Cell, 14, pp. 53-63. , PMID: 17254952
  • Merritt, J.H., Kadouri, D.E., O'Toole, G.A., Growing and analyzing static biofilms (2005) Curr Protoc Microbiol, , Unit IB.1.1-1B.1.17. PMID: 18770545
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685. , PMID: 5432063
  • Weber, K., Osborn, M., The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis (1969) J Biol Chem, 244, pp. 4406-4412. , PMID: 5806584
  • Peterson, G.L., A Simplification of the Protein Assay Method of Lowry et al. Which is More Generally Applicable (1977) Anal Biochem, 83, pp. 346-356. , PMID: 603028
  • Henzel, W.J., Billeci, T.M., Stults, J.T., Wong, S.C., Grimley, C., Identifying proteins from twodimensional gels by molecular mass searching of peptide fragments in protein sequence databases (1993) Proc Natl Acad Sci U S A, 90, pp. 5011-5015. , PMID: 8506346
  • Weber, A., Kogl, S.A., Jung, K., Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli (2006) J Bacteriol, 188, pp. 7165-7175. , PMID: 17015655
  • Youard, Z.A., Gaëtan, L.A.M., Majcherczyk, P.A., Schalk, I.J., Reimmann, C., Pseudomonas fluorescens CHAO produces Enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore Pyochelin (2007) J Biol Chem, 282, pp. 35546-35553. , PMID: 17938167
  • Cox, C.D., Rinehart, K.L., Moore, M.L., Cook, C.J., Pyochelin: Novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa (1981) Proc Natl Acad Sci U S A, 78, pp. 7256-7260
  • De Weger, L.A., Van Der Vlugt, C.I.M., Wijfjes, A.H., Bakker, P.A.H.M., Schippers, B., Flagella of plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato root (1987) J Bacteriol, 169, pp. 2769-2775. , PMID: 3294806
  • Lugtenberg, B.J., Dekkers, L., Bloemberg, G.V., Molecular determinants of rhizosphere colonization by Pseudomonas (2001) Annu Rev Phytopathol, 39, pp. 461-490. , PMID: 11701873
  • Rudrappa, T., Biedrzycki, M.L., Bais, H.P., Causes and consequences of plant-associated biofilms (2008) FEMS Microbiol Lett, 64, pp. 153-166
  • Toyoda, H., Katsuragi, K.T., Tamai, T., Ouchi, S., DNA sequence of genes for detoxification of fusaric acid, a wilt-inducing agent produced by Fusarium species (1991) J Phytopathol, 133, pp. 265-277
  • Utsumi, R., Yagi, T., Katayama, S., Katsuragi, K., Tachibana, K., Molecular cloning and characterization of the fusaric acid-resistance gene from Pseudomonas cepacia (1991) Agric Biol Chem, 7, pp. 1913-1918
  • Schweizer, H.P., Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: Unanswered questions (2003) Genet Mol Res, 2, pp. 48-62. , PMID: 12917802
  • Meyer, J.M., Abdallah, M.A., The fluorescent pigment of Pseudomonas fluorescens: Biosynthesis, purification and physicochemical properties (1978) J Gen Microbiol, 107, pp. 319-328
  • Hill-Cottingham, D.G., Spectrophotometric determination of iron chelates. Part I (1955) Analyst, 80, pp. 906-908
  • Hill-Cottingham, D.G., Spectrophotometic determination of iron chelates. PartII (1957) Analyst, 82, pp. 524-525
  • Hill-Cottingham, D.G., A spectrophotometric method of analysis of chelate solutions and its application to the study of iron chelates in soils and plants (1957) Soil Sci, 84, pp. 43-49
  • Malini, S., Heavy metal chelates of fusaric acid: In vitro spectrophotometry (1996) J Phytopathol, 57, pp. 221-231
  • Gaumann, E., The mechanism of fusaric acid injury (1958) Phytopathology, 48, p. 670
  • Bacon, C.W., Porter, J.K., Norred, W.P., Leslie, J.F., Production of fusaric acid by Fusarium species (1996) Appl Environ Microbiol, 62, pp. 4039-4043. , PMID: 8899996
  • Landa, B.B., Cachinero-Díaz, J.M., Lemanceau, P., Jímenez-Díaz, R.M., Alabouvette, C., Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum (2002) Can J Microbiol, 48, pp. 971-985. , PMID: 12556125
  • Lim, C.L., Hassan, K.A., Tetu, S.C., Loper, J.E., Paulsen, I.T., The effect of iron limitation on the transcriptome and proteome of Pseudomonas fluorescens Pf-5 (2012) PLoS One, 7, p. e39139. , PMID: 22723948
  • Ramautar, A., (2003) An Investigation into the Apoptotic Inducing Effect of Fusaric Acid on Human Lymphocytes and Its Role in Cell Growth Inhibition, , Master Thesis. Durban: University of Natal
  • Fernandez-Pol, J.A., Klos, D.J., Hamilton, P.D., Cytotoxic activity of fusaric acid on human adenocarcinoma cells in tissue culture (1993) Anticancer Res, 13, pp. 57-64. , PMID: 8476229
  • Fernandez-Pol, J.A., Jr., Bono, V.H., Johnson, G.S., Control of growth by picolinic acid: Differential response of normal and transformed cells (1977) Proc Natl Acad Sci U S A, 74, pp. 2889-2893. , PMID: 197524
  • Almario, J., Prigent-Combaret, C., Muller, D., Moënne-Loccoz, Y., Effect of clay mineralogy on iron bioavailability and rhizosphere transcription of 2,4-Diacetylphloroglucinol biosynthetic genes in biocontrol Pseudomonas protegens (2013) MPMI, 26, pp. 566-574. , PMID: 23405868
  • Duffy, B.K., Défago, G., Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains (1999) Appl Environ Microbiol, 65, pp. 2429-2438. , PMID: 10347023
  • Wendenbaum, S., Demange, P., Dell, A., Meyer, J.M., Abdallah, M.A., The structure of pyoverdin Pa, the siderophore of Pseudomonas aeruginosa (1983) Tetrahedron Lett, 24, pp. 4877-4880
  • Liu, P.V., Shokrani, F., Biological activities of pyochelins: Iron-chelating agents of Pseudomonas aeruginosa (1978) Infect Immun, 22, pp. 878-890. , PMID: 103839
  • Rinehart, K.L., Staley, A.L., Wilson, S.R., Andenbauer, R.G., Cox, C.D., Steroechemical assignment of the pyochelins (1995) J Org Chem, 60, pp. 2786-2791
  • Elad, Y., Baker, R., Influence of trace amounts of cations and siderophore-producing Pseudomonas on chlamydospore germination of Fusarium oxysporum (1985) Ecology and Epidemiology, 75, pp. 1047-1052
  • Elad, Y., Baker, R., The role of competition for iron and carbon in suppression of chlamidospore germination of Fusarium spp. By Pseudomonas spp (1985) Ecol Epidemiol, 75, pp. 1053-1059
  • Sneh, B., Dupler, M., Elad, Y., Baker, R., Chlamydospore germination of Fusarium oxyporum f. Sp. Cucumerinum as affected by fluorescent and lutic bacteria from a Fusarium-suppressive soil (1984) Ecol Epidemiol, 74, pp. 1115-1124
  • Visca, P., Colotti, G., Serino, L., Verzili, D., Orsi, N., Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes (1992) Appl Environ Microbiol, 58, pp. 2886-2893. , PMID: 1444402
  • Bachmann, B.J., Derivations and genotypes of some mutant derivaties of Escherichia coli K-12 (1996) Escherichia Coli and Salmonella: Cellular and Molecular Biology, pp. 2460-2488. , Neidhardt FC, III RC, Gross CA, Ingraham JL, Lin ECC et al., editors. Washington, DC.: ASM Press
  • Simon, R., Preifer, U., Puhler, A., A broad-host-range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria (1983) Biotechnology, 1, pp. 784-791
  • Yanisch-Perron, C., Vieira, J., Messing, J., Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors (1985) Gene, 33, pp. 103-119. , PMID: 2985470
  • Miller, V.L., Mekalanos, J.J., A novel suicide vector and its use in construction of insertion mutations: Osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR (1998) J Bacteriol, 170, pp. 2575-2583
  • Howell, C.R.S., Control of Rhizoctonia solani in cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium (1979) Phytopathology, 69, pp. 480-482

Citas:

---------- APA ----------
Ruiz, J.A., Bernar, E.M. & Jung, K. (2015) . Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5. PLoS ONE, 10(1).
http://dx.doi.org/10.1371/journal.pone.0117040
---------- CHICAGO ----------
Ruiz, J.A., Bernar, E.M., Jung, K. "Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5" . PLoS ONE 10, no. 1 (2015).
http://dx.doi.org/10.1371/journal.pone.0117040
---------- MLA ----------
Ruiz, J.A., Bernar, E.M., Jung, K. "Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5" . PLoS ONE, vol. 10, no. 1, 2015.
http://dx.doi.org/10.1371/journal.pone.0117040
---------- VANCOUVER ----------
Ruiz, J.A., Bernar, E.M., Jung, K. Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5. PLoS ONE. 2015;10(1).
http://dx.doi.org/10.1371/journal.pone.0117040