Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Temperature is one of the most important factors for bacterial growth and development. Cold environments are widely distributed on earth, and psychrotolerant and psychrophilic microorganisms have developed different adaptation strategies to cope with the stress derived from low temperatures. Pseudomonas extremaustralis is an Antarctic bacterium able to grow under low temperatures and to produce high amounts of polyhydroxyalkanoates (PHAs). In this work, we analyzed the genome-wide transcriptome by RNA deepsequencing technology of early exponential cultures of P. extremaustralis growing in LB (Luria Broth) supplemented with sodium octanoate to favor PHA accumulation at 8°C and 30°C. We found that genes involved in primary metabolism, including tricarboxylic acid cycle (TCA) related genes, as well as cytochromes and amino acid metabolism coding genes, were repressed at low temperature. Among up-regulated genes, those coding for transcriptional regulatory and signal transduction proteins were over-represented at cold conditions. Remarkably, we found that genes involved in ethanol oxidation, exaA, exaB and exaC, encoding a pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase, the cytochrome c550 and an aldehyde dehydrogenase respectively, were up-regulated. Along with RNA-seq experiments, analysis of mutant strains for pqqB (PQQ biosynthesis protein B) and exaA were carried out. We found that the exaA and pqqB genes are essential for growth under low temperature in LB supplemented with sodium octanoate. Additionally, prosaniline assay measurements showed the presence of alcohol dehydrogenase activity at both 8°C and 30°C, while the activity was abolished in a pqqB mutant strain. These results together with the detection of ethanol by gas chromatography in P. extremaustralis cultures grown at 8°C support the conclusion that this pathway is important under cold conditions. The obtained results have led to the identification of novel components involved in cold adaptation mechanisms in this bacterium, suggesting for the first time a role of the ethanol oxidation pathway for bacterial growth at low temperatures. © 2015 Tribelli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Documento: Artículo
Título:Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium pseudomonas extremaustralis
Autor:Tribelli, P.M.; Venero, E.C.S.; Ricardi, M.M.; Gómez-Lozano, M.; Iustman, L.J.R.; Molin, S.; López, N.I.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, Buenos Aires, C1428EGA, Argentina
IQUIBICEN, CONICET, Buenos Aires, Argentina
Facultad de Ciencias Exactas Y Naturales Biología Molecular y Neurociencias (IFIBYNE-CONICET), Instituto de Fisiología, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hrsholm, Denmark
Palabras clave:alcohol dehydrogenase; aldehyde dehydrogenase; cytochrome; transcriptome; tricarboxylic acid; alcohol; alcohol dehydrogenase; alcohol oxidation; amino acid metabolism; Article; azu gene; bacterial gene; bacterial growth; bacterial survival; cold acclimatization; controlled study; cyoA gene; cyoB gene; cyoC gene; cyoD gene; down regulation; enzyme activity; exaA gene; exaB gene; exaC gene; fleQ gene; flG gene; flH gene; flhA gene; fliF gene; fliG gene; fliM gene; flK gene; flL gene; gabD gene; gabT gene; gas chromatography; gene function; gene identification; genetic association; low temperature; mobA gene; mobB gene; nonhuman; potABCD gene; potFGHI gene; pqqB gene; protein metabolism; Pseudomonas; Pseudomonas extremaustralis; RNA analysis; RNA sequence; sequence analysis; signal transduction; strain identification; transcription regulation; transcriptomics; upregulation; Antarctica; bacterial gene; cold; gene expression profiling; gene expression regulation; genetics; growth, development and aging; metabolism; open reading frame; oxidation reduction reaction; Pseudomonas; software; Alcohol Dehydrogenase; Antarctic Regions; Cold Temperature; Ethanol; Gene Expression Profiling; Gene Expression Regulation, Bacterial; Genes, Bacterial; Open Reading Frames; Oxidation-Reduction; Pseudomonas; Software; Up-Regulation
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
CAS:alcohol dehydrogenase, 9031-72-5; aldehyde dehydrogenase, 37353-37-0, 9028-86-8; alcohol, 64-17-5; Alcohol Dehydrogenase; Ethanol


  • Martinez-Antonio, A., Collado-Vides, J., Identifying global regulators in transcriptional regulatory networks in bacteria (2003) Curr Opin Microbiol, 6, pp. 482-489. , PMID: 14572541
  • Barria, C., Malecki, M., Arraiano, C.M., Bacterial adaptation to cold (2013) Microbiology, 159, pp. 2437-2443. , PMID: 24068238
  • Chattopadhyay, M.K., Raghu, G., Sharma, Y.V., Biju, A.R., Rajasekharan, M.V., Shivaji, S., Increase in oxidative stress at low temperature in an antarctic bacterium (2011) Curr Microbiol, 62, pp. 544-546. , PMID: 20730433
  • Rodrigues, D.F., Tiedje, J.M., Coping with our cold planet (2008) Appl Environ Microbiol, 74, pp. 1677-1686. , PMID: 18203855
  • Schreiber, K., Boes, N., Eschbach, M., Jaensch, L., Wehland, J., Bjarnsholt, T., Anaerobic survival of pseudomonas aeruginosa by pyruvate fermentation requires an USP-type stress protein (2006) J Bacteriol, 88, pp. 659-668. , PMID: 16385055
  • Schobert, M., Gorisch, H., A soluble two-component regulatory system controls expression of quinoprotein ethanol dehydrogenase (QEDH) but not expression of cytochrome c(550) of the ethanol-oxidation system in pseudomonas aeruginosa (2001) Microbiology, 147, pp. 363-372. , PMID: 11158353
  • Miller, S.H., Browne, P., Prigent-Combaret, C., Combes-Meynet, E., Morrissey, J.P., O'Gara, F., Biochemical and genomic comparison of inorganic phosphate solubilization in pseudomonas species (2010) Environ Microbiol Rep, 2, pp. 403-411. , PMID: 23766113
  • Lopez, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Potter, M., Steinbüchel, A., Pseudomonas extremaustralis sp. Nov., a poly (3-hydroxybutyrate) producer isolated from an antarctic environment (2009) Curr Microbiol, 59, pp. 514-519. , PMID: 19688380
  • Catone, M.V., Ruiz, J.A., Castellanos, M., Segura, D., Espin, G., López, N.I., High polyhydroxybutyrate production in pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes (2014) Plos One, 9, p. e98873. , PMID: 24887088
  • Raiger, I.L.J., Tribelli, P.M., Ibarra, J.G., Catone, M.V., Solar Verero, E.C., López, N.I., Genome sequence analysis of pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance (2015) Extremophiles, 19, pp. 207-220. , PMID: 25316211
  • Ayub, N.D., Tribelli, P.M., Lopez, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the antarctic bacterium pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66. , PMID: 18931822
  • Tribelli, P.M., Lopez, N.I., Poly(3-hydroxybutyrate) influences bio film formation and motility in the novel antarctic species pseudomonas extremaustralis under cold conditions (2011) Extremophiles, 15, pp. 541-547. , PMID: 21667094
  • Tribelli, P.M., Mendez, B.S., Lopez, N.I., Oxygen-sensitive global regulator, ANR, is involved in the biosynthesis of poly(3-hydroxybutyrate) in pseudomonas extremaustralis (2010) J Mol Microbiol Biotechnol, 19, pp. 180-188. , PMID: 21042031
  • Tribelli, P.M., Nikel, P.I., Oppezzo, O.J., Lopez, N.I., Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in pseudomonas extremaustralis (2013) Microbiology, 159, pp. 259-268. , PMID: 23223440
  • Tribelli, P.M., Hay, A.G., Lopez, N.I., The global anaerobic regulator anr, is involved in cell attachment and aggregation influencing the first stages of bio film development in pseudomonas extremeaustralis (2013) PLoS One, 8, p. e76685. , PMID: 24146909
  • Sharma, C.M., Hoffmann, S., Darfeuille, F., Reignier, J., Findeiss, S., Sittka, A., The primary transcriptome of the major human pathogen helicobacter pylori (2010) Nature, 464, pp. 250-255. , PMID: 20164839
  • Schmidtke, C., Findeiss, S., Sharma, C.M., Kuhfuss, J., Hoffmann, S., Vogel, J., Genome-wide transcriptome analysis of the plant pathogen xanthomonas identifies sRNAs with putative virulence functions (2012) Nucleic Acids Res, 40, pp. 2020-2031. , PMID: 22080557
  • Gomez-Lozano, M., Marvig, R.L., Molin, S., Long, K.S., Genome-wide identification of novel small RNAs in pseudomonas aeruginosa (2012) Environ Micro biol, 14, pp. 2006-2016. , PMID: 22533370
  • Balasubramanian, D., Kumari, H., Jaric, M., Fernandez, M., Turner, K.H., Dove, S.L., Deep sequencing analyses expands the pseudomonas aeruginosa ampr regulon to include small rnamediated regulation of iron acquisition, heat shock and oxidative stress response (2014) Nucleic Acids, Res, 42, pp. 979-998. , PMID: 24157832
  • Wang, D., Seeve, C., Pierson, L.S., III, Pierson, E.A., Transcriptome profiling reveals links between Pars /Parr, mexef-oprn, and quorum sensing in the regulation of adaptation and virulence in pseudomonas aeruginosa (2013) BMC Genomics, 14, p. 618. , PMID: 24034668
  • Casey, A., Fox, E.M., Schmitz-Esser, S., Coffey, A., McAuliffe, O., Ket, J., Transcriptome analysis of listeria monocytogenes exposed to biocide stress reveals a multi-system response involving cell wall synthesis, sugar uptake, and motility (2014) Front Microbiol, 5, p. 68. , PMID: 24616718
  • Conway, T., Creecy, J.P., Maddox, S.M., Grissom, J.E., Conkle, T.L., Shadid, T.M., Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing (2014) MBio, 5, pp. e01414-e01442. , PMID: 25006232
  • Subashchandrabose, S., Hazen, T.H., Brumbaugh, A.R., Himpsl, S.D., Smith, S.N., Ernst, R.D., Host-specific induction of Escherichia coli fitness genes during human urinary tract infection (2014) Proc Natl, Acad Sci U S A, 111, pp. 18327-18332. , PMID: 25489107
  • Fonseca, P., Moreno, R., Rojo, F., Growth of pseudomonas putida at low temperature: Global transcriptomic and proteomic analyses (2011) Environ Microbiol Rep, 3, pp. 329-339. , PMID: 23761279
  • Mykytczuk, N.C., Foote, S.J., Omelon, C.R., Southam, G., Greer, C.W., Whyte, L.G., Bacterial growth at-15 degrees c; molecular insights from the permafrost bacterium planococcus halocryophilus or1 (2013) Isme J, 7, pp. 1211-1226. , PMID: 23389107
  • Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., Witholt, B., Formation of polyesters by pseudomonas oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates (1988) Appl Environ Microbiol, 54, pp. 2924-2932. , PMID: 16347790
  • Karpinets, T.V., Greenwood, D.J., Sams, C.E., Ammons, J.T., RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis (2006) BMC Biol, 4, p. 30. , PMID: 16953894
  • Gómez-Lozano, M., Marvig, R.L., Molin, S., Long, K.S., Identification of bacterial small RNAS by RNA sequencing (2014) Pseudomonas Methods and Protocols, Methods in Molecular Biology, pp. 433-456. , Filloux A, Ramos JL, editors. New York
  • McClure, R., Balasubramanian, D., Sun, Y., Bobrovskyy, M., Sumby, P., Genco, C., Computational analysis of bacterial RNA-SEQ data (2013) Nucleic Acids Res, 41, p. e140. , PMID: 23716638
  • Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., Robles, M., Blast2go: A universal tool for annotation, visualization and analysis in functional genomics research (2005) Bioinformatics, 21, pp. 3674-3676. , PMID: 16081474
  • Larionov, A., Krause, A., Miller, W., A standard curve based method for relative real time PCR data processing (2005) BMC Bioinformatics, 6 (62). , PMID: 15780134
  • De Lorenzo, V., Herrero, M., Jakubzik, U., Timmis, K.N., Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria (1990) J Bacteriol, 172, pp. 6568-6572. , PMID: 2172217
  • McPhee, J.B., Lewenza, S., Hancock, R.E., Cationic antimicrobial peptides activate a two-component regulatory system, pmra-pmrb, that regulates resistance to polymyxin B and cationic antimicrobial peptides in pseudomonas aeruginosa (2003) Mol Microbiol, 50, pp. 205-217. , PMID: 14507375
  • Link, A.J., Phillips, D., Church, G.M., Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: Application to open reading frame characterization (1997) J Bacteriol, 179, pp. 6228-6237. , PMID: 9335267
  • Nikel, P.I., Pettinari, M.J., Galvagno, M.A., Mendez, B.S., Poly (3-hydroxybutyrate) synthesis by recombinant Escherichia coli arca mutants in microaerobiosis (2006) Appl Environ Microbiol, 72, pp. 2614-2620. , PMID: 16597965
  • Lee, S.H., Lee, S.Y., Park, B.C., Cell surface display of lipase in pseudomonas putida KT2442 using oprf as an anchoring motif and its bio catalytic applications (2005) Appl Environ Microbiol, 71, pp. 8581-8586. , PMID: 16332850
  • Conway, T., Sewell, G.W., Osman, Y.A., Ingram, L.O., Cloning and sequencing of the alcohol dehydrogenase II gene from zymomonas mobilis (1987) J Bacteriol, 169, pp. 2591-2597. , PMID: 3584063
  • Hempel, N., Gorisch, H., Mern, D.S., Gene erca, encoding a putative iron-containing alcohol dehydrogenase, is involved in regulation of ethanol utilization in pseudomonas aeruginosa (2013) J Bacteriol, 195, pp. 3925-3932. , PMID: 23813731
  • Vrionis, H.A., Daugulis, A.J., Kropinski, A.M., Identification and characterization of the agmr regulator of pseudomonas putida: Role in alcohol utilization (2002) Appl Microbiol Biotechnol, 58, pp. 469-475. , PMID: 11954793
  • Phadtare, S., Recent developments in bacterial cold-shock response (2004) Curr Issues Mol Biol, 6, pp. 125-136. , PMID: 15119823
  • Gomez-Lozano, M., Marvig, R.L., Molina-Santiago, C., Tribelli, P.M., Ramos, J.L., Molin, S., Diversity of small RNAs expressed in pseudomonas species (2015) Environ Microbiol Rep, 7, pp. 227-236. , PMID: 25394275
  • Piette, F., D'Amico, S., Mazzucchelli, G., Danchin, A., Leprince, P., Feller, G., Life in the cold: A proteomic study of cold-repressed proteins in the antarctic bacterium pseudoalteromonas haloplanktis TAC125 (2011) Appl Environ Microbiol, 77, pp. 3881-3883. , PMID: 21478318
  • Bignucolo, A., Appanna, V.P., Thomas, S.C., Auger, C., Han, S., Omri, A., Hydrogen peroxide stress provokes a metabolic reprogramming in pseudomonas fluorescens: Enhanced production of pyruvate (2013) J Biotechnol, 167, pp. 309-315. , PMID: 23871654
  • Jung, I.L., Oh, T.J., Kim, I.G., Abnormal growth of polyamine-deficient Escherichia coli mutant is partially caused by oxidative stress-induced damage (2003) Arch Biochem Biophys, 418, pp. 125-132. , PMID: 14522584
  • Sabra, W., Kim, E.J., Zeng, A.P., Physiological responses of pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures (2002) Microbiology, 148, pp. 3195-3202. , PMID: 12368453
  • Wozniak, D.J., Ohman, D.E., Transcriptional analysis of the pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT (1994) J Bacteriol, 176, pp. 6007-6014. , PMID: 7928961
  • Vasil, M.L., How we learnt about iron acquisition in pseudomonas aeruginosa: A series of very fortunate events (2007) Biometals, 20, pp. 587-601. , PMID: 17186376
  • Mern, D.S., Ha, S.W., Khodaverdi, V., Gliese, N., Gorisch, H., A complex regulatory network controls aerobic ethanol oxidation in pseudomonas aeruginosa: Indication of four levels of sensor kinases and response regulators (2010) Microbiology, 156, pp. 1505-1516. , PMID: 20093290
  • Barbier, M., Damron, F.H., Bielecki, P., Suarez-Diez, M., Puchalka, J., Albertĺ, S., From the environment to the host: Re-wiring of the transcriptome of pseudomonas aeruginosa from 22 degrees C to 37 degrees C (2014) PLoS One, 9, p. e89941. , PMID: 24587139
  • Toyama, H., Mathews, F.S., Adachi, O., Matsushita, K., Quinohemoprotein alcohol dehydrogenases: Structure, function, and physiology (2004) Arch Biochem Biophys, 428, pp. 10-21. , PMID: 15234265
  • Filipiak, W., Sponring, A., Baur, M.M., Filipiak, A., Ager, C., Wiesenhofer, H., Molecular analysis of volatile metabolites released specifically by staphylococcus aureus and pseudomonas aeruginosa (2012) BMC Microbiol, 12, p. 113. , PMID: 22716902
  • Nikel, P.I., De Lorenzo, V., Robustness of pseudomonas putida KT2440 as a host for ethanol biosynthesis (2014) N Biotechnol, 31, pp. 562-571. , PMID: 24572656


---------- APA ----------
Tribelli, P.M., Venero, E.C.S., Ricardi, M.M., Gómez-Lozano, M., Iustman, L.J.R., Molin, S. & López, N.I. (2015) . Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium pseudomonas extremaustralis. PLoS ONE, 10(12).
---------- CHICAGO ----------
Tribelli, P.M., Venero, E.C.S., Ricardi, M.M., Gómez-Lozano, M., Iustman, L.J.R., Molin, S., et al. "Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium pseudomonas extremaustralis" . PLoS ONE 10, no. 12 (2015).
---------- MLA ----------
Tribelli, P.M., Venero, E.C.S., Ricardi, M.M., Gómez-Lozano, M., Iustman, L.J.R., Molin, S., et al. "Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium pseudomonas extremaustralis" . PLoS ONE, vol. 10, no. 12, 2015.
---------- VANCOUVER ----------
Tribelli, P.M., Venero, E.C.S., Ricardi, M.M., Gómez-Lozano, M., Iustman, L.J.R., Molin, S., et al. Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium pseudomonas extremaustralis. PLoS ONE. 2015;10(12).