Gholipour, Y.; Erra-Balsells, R.; Nonami, H."Blossom end rot tomato fruit diagnosis for in situ cell analyses with real time pico-pressure probe ionization mass spectrometry" (2017) Environmental Control in Biology. 55(1):41-51
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


By combining a cell pressure probe and an Orbitrap mass spectrometer, quantitative snapshot profiles of metabolites of in situ plant single cells during development of blossom end rot in tomato (Solanum lycopersicum L.) fruit were analyzed while tomato plants were grown hydroponically in a greenhouse. By using the pressure probe, cell turgor, cell volume, cell wall elastic modulus, and hydraulic conductivity of plasma membrane were measured, followed by managed cytoplasm sampling, and osmotic and water potentials determination. It was found that the cell bursting results from alterations in water relations and cell wall properties accompanied with changes in metabolites of cells located at blossom end rot area in tomato fruit. From the water relations point of view, the loss of the elasticity and cell wall weakening, with decreased water potential and excess turgor resulted in mechanical rupture of membrane and cell wall. Abscisic acid was detected in damaged cells as a possible evidence of triggered precocious maturity. Simultaneously, a sharp rise in the concentration of phenols (coumarinate-glucoside and chlorogenic acid) and salicylic acid and decline in ascorbic acid reflected the activation of cell death process that would facilitate the deterioration of cell wall and plasma membrane.


Documento: Artículo
Título:Blossom end rot tomato fruit diagnosis for in situ cell analyses with real time pico-pressure probe ionization mass spectrometry
Autor:Gholipour, Y.; Erra-Balsells, R.; Nonami, H.
Filiación:Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University, 3S-7 Tarumi, Matsuyama, Ehime, 790S566, Japan
CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 3 P, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Abscisic acid; Cell turgor; Elastic modulus; Hydraulic conductivity; Metabolomics; Water relations
Página de inicio:41
Página de fin:51
Título revista:Environmental Control in Biology
Título revista abreviado:Enviro. Cont. Biol.


  • Barros, J., Serrani-Yarce, J.C., Chen, F., Baxter, D., Venables, B.J., Dixon, R.A., Role of bifunctional ammonia-lyase in grass cell wall biosynthesis (2016) Nat. Plants, 2, p. 16050
  • Boyer, J.S., (1995) Measuring the Water Status of Plants and Soils, pp. 103-142. , ed. by Boyer, J. S., Chapter 4: Pressure Probe, Academic Press, San Diego
  • Buta, J.G., Spaulding, D.W., Endogenous levels of phenolics in tomato fruit during growth and maturation (1997) J. Plant Growth Regul., 16, pp. 43-46
  • Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, E.-I., Nunes-Nesi, A., Nikiforova, V., Fernie, A.R., Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior (2006) Plant Physiol., 142, pp. 1380-1396
  • Chen, G.P., Wilson, I.D., Kim, S.H., Grierson, D., Inhibiting expression of a tomato ripening-associated membrane protein increases organic acids and reduces sugar levels of fruit (2001) Planta, 212, pp. 799-807
  • Cohen, J.J., Apoptosis (1993) Immunol Today, 14, pp. 126-130
  • Cooks, R.G., Ouyang, Z., Takats, Z., Wiseman, J.M., Ambient mass spectrometry (2006) Science, 311, pp. 1566-1570
  • Dat, J.F., Capelli, N., Van Breusegem, F., The interplay between salicylic acid and reactive oxigen species during cell death in plants (2007) Salicylic Acid A Plant Hormone, pp. 247-276. , ed. by Hayat, S., Ahmad, A., Springer, Dordrecht, Netherlands
  • DeBolt, S., Gutierrez, R., Ehrhardt, D.W., Melo, C.V., Ross, L., Cutler, S.R., Somerville, C., Bonetta, D., Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 5854-5859
  • Dekock, P.C., Vaughan, D., Hall, A., Ord, B.G., Biochemical studies on blossom end rot of tomatoes (1980) Physiol. Plant, 48, pp. 312-316
  • El-Shimi, N.M., Control of enzymatic browning in apple slices by using ascorbic acid under different conditions (1993) Plant Foods Hum. Nutr., 43, pp. 71-76
  • Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M., Electrospray ionization for mass spectrometry of large biomolecules (1989) Science, 246, pp. 64-71
  • Gholipour, Y., Erra-Balsells, R., Hiraoka, K., Nonami, H., Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites (2013) Anal. Bioch., 433, pp. 70-78
  • Gholipour, Y., Erra-Balsells, R., Nonami, H., In situ pressure probe sampling and UVMALDI MS for proling metabolites in living single cells (2012) Mass Spectrom., 1, p. A0003
  • Gómez-Romero, M., Segura-Carretero, A., Fernández-Gutiérrez, A., Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit (2010) Phytochemistry, 71, pp. 1848-1864
  • Ho, L.C., White, P.J., A cellular hypothesis for the induction of blossom-end rot in tomato fruit (2005) Ann. Bot., 95, pp. 571-581
  • Holuigue, L., Salinas, P., Blanco, F., Garretón, V., Salicylic acid and reactive oxygen species in the activation of stress defence genes (2007) Salicylic Acid A Plant Hormone, pp. 197-247. , ed. by Hayat, S., Ahmad, A., Springer, Dordrecht, Netherlands
  • Hossain, M.M., Nonami, H., Fruit growth of tomato associated with water uptake and cell expansion (2011) J. Agric. Technol., 7, pp. 1049-1062
  • Hossain, M.M., Nonami, H., Effect of salt stress on physiological response of tomato fruit grown in hydroponic culture system (2012) Hortic. Sci. (Prague), 39, pp. 26-32
  •, updated Oct. 2009 tomato metabolome database; Hüsken, D., Steudle, E., Zimmermann, U., Pressure probe technique for measuring water relations of cells in higher plants (1978) Plant Physiol., 61, pp. 158-163
  • Jarvis, M.C., Structure and properties of pectin gels in plant cell walls (1984) Plant Cell Environ., 7, pp. 153-227
  • Laporte, C., Kosta, A., Klein, G., Aubry, L., Lam, D., Tresse, E., Luciani, M.F., Golstein, P., A necrotic cell death model in a protist (2007) Cell Death Differ., 14, pp. 266-274
  • Lyon, C.B., Beeson, K.C., Barrentine, M., Macroelement nutrition of the tomato plant as correlated with fruit fullness and occurrence of blossom-end rot (1942) Bot. Gaz., 103, pp. 651-667
  • Malone, M., Tomos, A.D., A simple pressure probe method for the dertermination of volume in higher plant cells (1990) Planta, 182, pp. 199-203
  • Munoz-Espinoza, V.A., Lopez-Climent, M.F., Casaretto, J.A., Gomez-Cadenas, A., Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions (2015) Front. Plant Sci., 6, p. 997
  • Moco, S., Bino, R.J., Vorst, O., Verhoeven, H.A., De Groot, J., Van Beek, T.A., Vervoort, J., De Vos, C.H.R., A liquid chromatography-mass spectrometry-based metabolome database for tomato (2006) Plant Physiol., 141, pp. 1205-1218
  • Noctor, G., Foyer, C., Ascorbate and glutathion: Keeping active oxygen under control (1998) Annu. Rev. Plant Phys. Plant Mol. Biol., 49, pp. 249-279
  • Nonami, H., Boyer, J.S., Turgor and growth at low water potentials (1989) Plant Physiol., 89, pp. 798-804
  • Nonami, H., Boyer, J.S., Direct demonstration of a growth-induced water potential gradient (1993) Plant Physiol., 102, pp. 13-19
  • Nonami, H., Fukuyama, T., Yamamoto, M., Yang, L., Hashimoto, Y., Blossom-end rot of tomato plants may not be directly caused by calcium deficiency (1995) Acta Hortic., 396, pp. 107-114
  • Nonami, H., Schulze, E.-D., Cell water potential, osmotic potential, and turgor in the epidermis and mesophyll of transpiring leaves (1989) Planta, 171, pp. 35-46
  • Oms-Oliu, G., Hertog, M.L.A.T.M., Van De Poel, B., Ampofo-Asiama, J., Geeraerd, A.H., Nicolai, B.M., Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life (2011) Postharvest Biol. Technol., 62, pp. 7-16
  • Pennell, R., Lamb, C., Programmed cell death in plants (1997) Plant Cell, 9, pp. 1157-1168
  • Rajasekaran, L.R., Aspinall, D., Paleg, L.G., Physiological mechanism of tolerance of Lycopersicon spp. Exposed to salt stress (2000) Can. J. Plant Sci., 80, pp. 151-159
  • Raven, E.L., Peroxidase-catalyzed oxidation of ascorbate. Structural, spectroscopic and mechanistic correlations in ascorbate peroxidase (2000) Subcell Biochem., 35, pp. 317-349
  • Saure, M.C., Blossom-end rot of tomato (Lycopersicon esculentum Mill.), a calcium- or a stress-related disorder? (2001) Sci. Hortic., 16, pp. 193-208
  • Schauer, N., Zamir, D., Fernie, A.R., Metabolic profiling of leaves and fruit of wild species tomato: A survey of the Solanum lycopersicum complex (2004) J. Exp. Bot., 56, pp. 297-307
  • Shackel, K.A., Direct measurement of turgor and osmotic potential in individual epidermal cells (1987) Plant Physiol., 83, pp. 719-722
  • Strauss, E., When walls can talk, plant biologists listen (1998) Science, 282, pp. 28-29
  • Taiz, L., Zeiger, E., (2006) Plant Physiology, p. 700. , 4th edition, Sinauer Associates, Inc., Sunderland
  • Tejedor, M.L., Mizuno, H., Tsuyama, N., Harada, T., Masujima, T., Direct sngle-cell molecular analysis of plant tissues by video mass spectrometry (2009) Anal. Sci., 25, pp. 1053-1056
  • Yildiz-Aktas, L., Dagnon, S., Gurel, A., Gesheva, E., Edreva, A., Drought tolerance in cotton: Involvement of nonenzymatic ROS-scavenging compounds (2009) J. Agron. Crop Sci., 195, pp. 247-253
  • Yu, Z., Chen, L.C., Suzuki, H., Ariyada, O., Erra-Balsells, R., Nonami, H., Hiraoka, K., Direct profiling of phytochemicals in tulip tissues and in vivo monitoring of the change of carbohydrate content in tulip bulbs by probe electrospray ionization mass spectrometry (2009) J. Am. Soc. Mass Spectrom., 20, pp. 2304-2311


---------- APA ----------
Gholipour, Y., Erra-Balsells, R. & Nonami, H. (2017) . Blossom end rot tomato fruit diagnosis for in situ cell analyses with real time pico-pressure probe ionization mass spectrometry. Environmental Control in Biology, 55(1), 41-51.
---------- CHICAGO ----------
Gholipour, Y., Erra-Balsells, R., Nonami, H. "Blossom end rot tomato fruit diagnosis for in situ cell analyses with real time pico-pressure probe ionization mass spectrometry" . Environmental Control in Biology 55, no. 1 (2017) : 41-51.
---------- MLA ----------
Gholipour, Y., Erra-Balsells, R., Nonami, H. "Blossom end rot tomato fruit diagnosis for in situ cell analyses with real time pico-pressure probe ionization mass spectrometry" . Environmental Control in Biology, vol. 55, no. 1, 2017, pp. 41-51.
---------- VANCOUVER ----------
Gholipour, Y., Erra-Balsells, R., Nonami, H. Blossom end rot tomato fruit diagnosis for in situ cell analyses with real time pico-pressure probe ionization mass spectrometry. Enviro. Cont. Biol. 2017;55(1):41-51.