Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Glucocorticoids (GCs), the most downstream effectors of the hypothalamic-pituitary-adrenal (HPA) axis, are key mediators in the interaction between immune and neuroendocrine systems. They exert their biological actions mainly through binding to their intracellular receptor, the glucocorticoid receptor (GR), which in turn influences gene expression by interacting with transcription factors and/or coregulators. GR abnormal function has been extensively associated to stress-related disorders, inflammatory and autoimmune diseases. Therefore, modulating GR activity is critical to overcome pathological conditions. The final outcome of GCs actions in the immune and neuroendocrine systems is regulated at multiple levels, including post-translational modifications (PTMs) of GR as well as of protein complexes involved in GR signaling. Understanding the influence of PTMs on the molecular mechanisms involved in GR signaling is thus of utmost importance in the search for therapeutic strategies aimed at modulating GR responses under pathophysiological circumstances, and to understand the neuroimmune circuits. © 2014 - IOS Press.

Registro:

Documento: Artículo
Título:The interplay between the glucocorticoid receptor activity and post-translational modifications in the immune and neuroendocrine systems
Autor:Antunica-Noguerol, M.; Aprile-Garcia, F.; Budziñski, M.L.; Proto-Cassina, L.; Liberman, A.C.; Arzt, E.
Filiación:Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner, Institute of the Max Planck Society, Buenos Aires, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Glucocorticoid receptor; post-translational modifications; transcription regulation; glucocorticoid; glucocorticoid receptor; transcription factor; allergic disease; article; autoimmune disease; biological functions; disease activity; disease association; disease course; gene expression; graft rejection; hormone action; hormone response; human; hypothalamus hypophysis adrenal system; immunopathology; inflammatory disease; molecular biology; neuroendocrine disease; nonhuman; outcome assessment; pathophysiology; priority journal; protein defect; protein function; protein phosphorylation; protein processing; receptor binding; signal transduction; tissue specificity
Año:2014
Volumen:5
Número:1
Página de inicio:19
Página de fin:32
DOI: http://dx.doi.org/10.3233/NIB-140083
Título revista:Advances in Neuroimmune Biology
Título revista abreviado:Adv. Neuroimmun. Biol.
ISSN:1878948X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1878948X_v5_n1_p19_AntunicaNoguerol

Referencias:

  • De Kloet, E.R., Joels, M., Holsboer, F., Stress and the brain: From adaptation to disease (2005) Nature Reviews Neuroscience, 6 (6), pp. 463-475. , 10.1038/nrn1683
  • Sapolsky, R.M., Romero, L.M., Munck, A.U., How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions (2000) Endocrine Reviews, 21 (1), pp. 55-89. , 10.1210/er.21.1.55
  • Liberman, A.C., Druker, J., Perone, M.J., Arzt, E., Glucocorticoids in the regulation of transcription factors that control cytokine synthesis (2007) Cytokine and Growth Factor Reviews, 18 (1-2), pp. 45-56. , 10.1016/j.cytogfr.2007.01.005, PII S1359610107000068
  • Boumpas, D.T., Chrousos, G.P., Wilder, R.L., Cupps, T.R., Balow, J.E., Glucocorticoid therapy for immune-mediated diseases: Basic and clinical correlates (1993) Annals of Internal Medicine, 119 (12), pp. 1198-1208
  • Schacke, H., Docke, W.-D., Asadullah, K., Mechanisms involved in the side effects of glucocorticoids (2002) Pharmacology and Therapeutics, 96 (1), pp. 23-43. , 10.1016/S0163-7258(02)00297-8, PII S0163725802002978
  • Evans, R.M., The steroid and thyroid hormone receptor superfamily (1988) Science, 240 (4854), pp. 889-895. , 10.1126/science.3283939
  • Beck, I.M., Vanden Berghe, W., Vermeulen, L., Yamamoto, K.R., Haegeman, G., De Bosscher, K., Crosstalk in inflammation: The interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases (2009) Endocr Rev, 30 (7), pp. 830-882. , 10.1210/er.2009-0013
  • Bledsoe, R.K., Montana, V.G., Stanley, T.B., Delves, C.J., Apolito, C.J., McKee, D.D., Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition (2002) Cell, 110 (1), pp. 93-105. , 10.1016/S0092-8674(02)00817-6
  • Lee, G.S., Simons Jr., S.S., Ligand binding domain mutations of the glucocorticoid receptor selectively modify the effects with, but not binding of, cofactors (2011) Biochemistry, 50 (3), pp. 356-366. , 10.1021/bi101792d
  • Pratt, W.B., Toft, D.O., Steroid receptor interactions with heat shock protein and immunophilin chaperones (1997) Endocrine Reviews, 18 (3), pp. 306-360. , 10.1210/er.18.3.306
  • De Bosscher, K., Haegeman, G., Minireview: Latest perspectives on antiinflammatory actions of glucocorticoids (2009) Mol Endocrinol, 23 (3), pp. 281-291. , 10.1210/me.2008-0283
  • Madan, A.P., DeFranco, D.B., Bidirectional transport of glucocorticoid receptors across the nuclear envelope (1993) Proceedings of the National Academy of Sciences of the United States of America, 90 (8), pp. 3588-3592
  • Elbi, C., Walker, D.A., Romero, G., Sullivan, W.P., Toft, D.O., Hager, G.L., DeFranco, D.B., Molecular chaperones function as steroid receptor nuclear mobility factors (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (9), pp. 2876-2881. , 10.1073/pnas.0400116101
  • Vandevyver, S., Dejager, L., Libert, C., On the trail of the glucocorticoid receptor: Into the nucleus and back (2012) Traffic, 13 (3), pp. 364-374. , 10.1111/j.1600-0854.2011.01288.x
  • Denis, M., Gustafsson, J.A., The Mr approximately 90, 000 heat shock protein: An important modulator of ligand and DNAbinding properties of the glucocorticoid receptor (1989) Cancer Res, 49 (8), pp. 2275s-2281s. , Suppl
  • Picard, D., Chaperoning steroid hormone action (2006) Trends Endocrinol Metab, 17 (6), pp. 229-235. , 10.1016/ j.tem.2006 06003
  • Sanchez, E.R., Chaperoning steroidal physiology: Lessons from mouse genetic models of Hsp90 and its cochaperones (2012) Biochim Biophys Acta, 1823 (3), pp. 722-729. , 10.1016/j.bbamcr.2011.11.006
  • Kovacs, J.J., Cohen, T.J., Yao, T.P., Chaperoning steroid hormone signaling via reversible acetylation (2005) Nucl Recept Signal, 3, pp. e004. , 10.1621/nrs.03004
  • Bucci, M., Roviezzo, F., Cicala, C., Sessa, W.C., Cirino, G., Geldanamycin, an inhibitor of heat shock protein 90 (Hsp90) mediated signal transduction has anti-inflammatory effects and interacts with glucocorticoid receptor in vivo (2000) Br J Pharmacol, 131 (1), pp. 13-16. , 10.1038/sj.bjp.0703549
  • Tago, K., Tsukahara, F., Naruse, M., Yoshioka, T., Takano, K., Hsp90 inhibitors attenuate effect of dexamethasone on activated NF-kappa;B and AP-1 (2004) Life Sciences, 74 (16), pp. 1981-1992. , 10.1016/j.lfs.2003.07.056
  • Rosenhagen, M.C., Soti, C., Schmidt, U., Wochnik, G.M., Hartl, F.U., Holsboer, F., Young, J.C., Rein, T., The heat shock protein 90-Targeting drug cisplatin selectively inhibits steroid receptor activation (2003) Molecular Endocrinology, 17 (10), pp. 1991-2001. , 10.1210/me.2003-0141
  • Galigniana, M.D., Harrell, J.M., Housley, P.R., Patterson, C., Fisher, S.K., Pratt, W.B., Retrograde transport of the glucocorticoid receptor in neurites requires dynamic assembly of complexes with the protein chaperone hsp90 and is linked to the CHIP component of the machinery for proteasomal degradation (2004) Molecular Brain Research, 123 (1-2), pp. 27-36. , 10.1016/j.molbrainres.2003.12.015, PII S0169328X04000269
  • Noguchi, T., Makino, S., Matsumoto, R., Nakayama, S., Nishiyama, M., Terada, Y., Regulation of glucocorticoid receptor transcription and nuclear translocation during single and repeated immobilization stress (2010) Endocrinology, 151 (9), pp. 4344-4355. , 10.1210/en.2010-0266
  • Shen, H.Y., Zhao, Y., Chen, X.Y., Xiong, R.P., Lu, J.L., Chen, J.F., Differential alteration of heat shock protein 90 in mice modifies glucocorticoid receptor function and susceptibility to trauma (2010) J Neurotrauma, 27 (2), pp. 373-381. , 10.1089/neu.2009.0926
  • Espallergues, J., Teegarden, S.L., Veerakumar, A., Boulden, J., Challis, C., Jochems, J., HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience (2012) J Neurosci, 32 (13), pp. 4400-4416. , 10.1523/JNEUROSCI.5634-11.2012
  • Wochnik, G.M., Ruegg, J., Abel, G.A., Schmidt, U., Holsboer, F., Rein, T., FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells (2005) Journal of Biological Chemistry, 280 (6), pp. 4609-4616. , 10.1074/jbc.M407498200
  • Davies, T.H., Ning, Y.-M., Sanchez, E.R., A new first step in activation of steroid receptors. Hormone-induced switching of FKBP51 and FKBP52 immunophilins (2002) Journal of Biological Chemistry, 277 (7), pp. 4597-4600. , 10.1074/jbc.C100531200
  • Paakinaho, V., Makkonen, H., Jaaskelainen, T., Palvimo, J.J., Glucocorticoid receptor activates poised FKBP51 locus through long-Distance interactions (2010) Mol Endocrinol, 24 (3), pp. 511-525. , 10.1210/me.2009-0443
  • Binder, E.B., The role of fkbp5 a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders (2009) Psychoneuroendocrinology, 34 (SUPPL. 1), pp. S186-S195. , 10.1016/ j.psyneuen. 2009 05.021
  • Storer, C.L., Dickey, C.A., Galigniana, M.D., Rein, T., Cox, M.B., FKBP51 and FKBP52 in signaling and disease (2011) Trends Endocrinol Metab, 22 (12), pp. 481-490. , 10.1016/j.tem.2011.08.001
  • Sivils, J.C., Storer, C.L., Galigniana, M.D., Cox, M.B., Regulation of steroid hormone receptor function by the 52-kda fk506-binding protein (fkbp52 (2011) Curr Opin Pharmacol, 11 (4), pp. 314-319. , 10.1016/j.coph.2011.03.010
  • Hartmann, J., Wagner, K.V., Dedic, N., Marinescu, D., Scharf, S.H., Wang, X.D., Fkbp52 heterozygosity alters behavioral, endocrine and neurogenetic parameters under basal and chronic stress conditions in mice (2012) Psychoneuroendocrinology, 37 (12), pp. 2009-2021. , 10.1016/ j.psyneuen.2012.04.017
  • John, S., Sabo, P.J., Johnson, T.A., Sung, M.-H., Biddie, S.C., Lightman, S.L., Voss, T.C., Hager, G.L., Interaction of the glucocorticoid receptor with the chromatin landscape (2008) Molecular Cell, 29 (5), pp. 611-624. , 10.1016/j.molcel.2008.02.010, PII S1097276508001299
  • John, S., Sabo, P.J., Thurman, R.E., Sung, M.H., Biddie, S.C., Johnson, T.A., Chromatin accessibility pre-Determines glucocorticoid receptor binding patterns (2011) Nat Genet, 43 (3), pp. 264-268. , 10.1038/ng.759
  • De Bosscher, K., Vanden Berghe, W., Haegeman, G., The interplay between the glucocorticoid receptor and nuclear factor-kappa;B or activator protein-1: Molecular mechanisms for gene repression (2003) Endocrine Reviews, 24 (4), pp. 488-522. , 10.1210/er.2002-0006
  • Liberman, A.C., Refojo, D., Druker, J., Toscano, M., Rein, T., Holsboer, F., Arzt, E., The activated glucocorticoid receptor inhibits the transcription factor T-bet by direct protein-protein interaction (2007) FASEB Journal, 21 (4), pp. 1177-1188. , http://www.fasebj.org/cgi/reprint/21/4/1177, 10.1096/fj.06-7452com
  • Ratman, D., Vanden, BergheW., Dejager, L., Libert, C., Tavernier, J., Beck, I.M., How glucocorticoid receptors modulate the activity of other transcription factors: A scope beyond tethering (2013) Mol Cell Endocrinol, 380 (1-2), pp. 41-54. , 10.1016/j.mce.2012.12.014
  • Surjit, M., Ganti, K.P., Mukherji, A., Ye, T., Hua, G., Metzger, D., Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor (2011) Cell, 145 (2), pp. 224-241. , 10.1016/ j.cell.2011.03.027
  • Hudson, W.H., Youn, C., Ortlund, E.A., The structural basis of direct glucocorticoid-mediated transrepression (2013) Nat Struct Mol Biol, 20 (1), pp. 53-58. , 10.1038/nsmb.2456
  • Glass, C.K., Rosenfeld, M.G., The coregulator exchange in transcriptional functions of nuclear receptors (2000) Genes and Development, 14 (2), pp. 121-141
  • McKenna, N.J., O'Malley, B.W., Combinatorial control of gene expression by nuclear receptors and coregulators (2002) Cell, 108 (4), pp. 465-474. , 10.1016/S0092-8674(02)00641-4
  • Wang, Q., Blackford Jr., J.A., Song, L.-N., Huang, Y., Cho, S., Simons Jr., S.S., Equilibrium interactions of corepressors and coactivators with agonist and antagonist complexes of glucocorticoid receptors (2004) Molecular Endocrinology, 18 (6), pp. 1376-1395. , 10.1210/me.2003-0421
  • Kroe, R.R., Baker, M.A., Brown, M.P., Farrow, N.A., Gautschi, E., Hopkins, J.L., LaFrance, R.R., Labadia, M.E., Agonist versus antagonist induce distinct thermodynamic modes of co-factor binding to the glucocorticoid receptor (2007) Biophysical Chemistry, 128 (2-3), pp. 156-164. , 10.1016/j.bpc.2007.03.013, PII S0301462207000816
  • Ronacher, K., Hadley, K., Avenant, C., Stubsrud, E., Simons Jr., S.S., Louw, A., Ligand-selective transactivation and transrepression via the glucocorticoid receptor: Role of cofactor interaction (2009) Mol Cell Endocrinol, 299 (2), pp. 219-231. , 10.1016/j.mce.2008.10.008
  • Lonard, D.M., O'Malley, B.W., Expanding functional diversity of the coactivators (2005) Trends in Biochemical Sciences, 30 (3), pp. 126-132. , 10.1016/j.tibs.2005.01.001
  • Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S.-C., Rosenfeld, M.G., A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors (1996) Cell, 85 (3), pp. 403-414. , 10.1016/S0092-8674(00)81118-6
  • De Bosscher, K., Berghe, W.V., Haegeman, G., Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators (2001) Molecular Endocrinology, 15 (2), pp. 219-227. , 10.1210/me.15.2.219
  • De Bosscher, K., Berghe, W.V., Vermeulen, L., Plaisance, S., Boone, E., Haegeman, G., Glucocorticoids repress NF-kappa;B-Driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell (2000) Proceedings of the National Academy of Sciences of the United States of America, 97 (8), pp. 3919-3924. , 10.1073/pnas.97.8.3919
  • Glass, C.K., Saijo, K., Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells (2010) Nat Rev Immunol, 10 (5), pp. 365-376. , 10.1038/nri2748
  • Schulz, M., Eggert, M., Baniahmad, A., Dostert, A., Heinzel, T., Renkawitz, R., RU486-induced glucocorticoid receptor agonism is controlled by the receptor N terminus and by corepressor binding (2002) Journal of Biological Chemistry, 277 (29), pp. 26238-26243. , 10.1074/jbc.M203268200
  • Rosenfeld, M.G., Lunyak, V.V., Glass, C.K., Sensors and signals: A coactivator/corepressor/epigenetic code for integrating signal-Dependent programs of transcriptional response (2006) Genes and Development, 20 (11), pp. 1405-1428. , http://www.genesdev.org/cgi/reprint/20/11/1405, 10.1101/gad.1424806
  • Rogatsky, I., Luecke, H.F., Leitman, D.C., Yamamoto, K.R., Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (26), pp. 16701-16706. , 10.1073/pnas.262671599
  • Uhlenhaut, N.H., Barish, G.D., Yu, R.T., Downes, M., Karunasiri, M., Liddle, C., Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes (2013) Mol Cell, 49 (1), pp. 158-171. , 10.1016/j.molcel.2012.10.013
  • Urnov, F.D., Wolffe, A.P., Chromatin remodeling and transcriptional activation: The cast (in order of appearance (2001) Oncogene, 20 (24), pp. 2991-3006. , 10.1038/sj.onc.1204323
  • Ito, K., Lim, S., Caramori, G., Cosio, B., Chung, K.F., Adcock, I.M., Barnes, P.J., A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (13), pp. 8921-8926. , 10.1073/pnas.132556899
  • Bilodeau, S., Vallette-Kasic, S., Gauthier, Y., Figarella-Branger, D., Brue, T., Berthelet, F., Lacroix, A., Drouin, J., Role of brg1 and hdac2 in gr trans-repression of the pituitary pomc gene and misexpression in cushing disease (2006) Genes and Development, 20 (20), pp. 2871-2886. , http://www.genesdev.org/cgi/reprint/20/20/2871, 10.1101/gad.1444606
  • Ramamoorthy, S., Cidlowski, J.A., Ligand-induced repression of the glucocorticoid receptor gene is mediated by an NCoR1 repression complex formed by long-range chromatin interactions with intragenic glucocorticoid response elements (2013) Mol Cell Biol, 33 (9), pp. 1711-1722. , 10.1128/MCB.01151-12
  • Bresnick, E.H., John, S., Berard, D.S., LeFebvre, P., Hager, G.L., Glucocorticoid receptor-Dependent disruption of a specific nucleosome on the mouse mammary tumor virus promoter is prevented by sodium butyrate (1990) Proc Natl Acad Sci U S A., 87 (10), pp. 3977-3981. , 10.1073/pnas.87.10. 3977
  • Qiu, Y., Zhao, Y., Becker, M., John, S., Parekh, B.S., Huang, S., Hendarwanto, A., Hager, G.L., Hdac1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription (2006) Molecular Cell, 22 (5), pp. 669-679. , 10.1016/j.molcel.2006.04.019, PII S109727650600267X
  • Luo, Y., JianW Stavreva, D., Fu, X., Hager, G., Bungert, J., Trans-regulation of histone deacetylase activities through acetylation (2009) J Biol Chem, 284 (50), pp. 34901-34910. , 10.1074/jbc.M109.038356
  • Kadiyala, V., Patrick, N.M., Mathieu, W., Jaime-Frias, R., Pookhao, N., An, L., Class I lysine deacetylases facilitate glucocorticoid-induced transcription (2013) J Biol Chem, 288 (40), pp. 28900-28912. , 10.1074/jbc.M113.505115
  • Marques-Deak, A., Cizza, G., Sternberg, E., Brain-immune interactions and disease susceptibility (2005) Molecular Psychiatry, 10 (3), pp. 239-250. , 10.1038/sj.mp.4001643
  • Besedovsky, H., Del Rey, A., Sorkin, E., Dinarello, C.A., Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones (1986) Science, 233 (4764), pp. 652-654
  • Besedovsky, H.O., Rey, A.D., Physiology of psychoneuroimmunology: A personal view (2007) Brain, Behavior, and Immunity, 21 (1), pp. 34-44. , 10.1016/j.bbi.2006.09.008, PII S0889159106003308
  • Arzt, E., Pereda, M.P., Castro, C.P., Pagotto, U., Renner, U., Stalla, G.K., Pathophysiological role of the cytokine network in the anterior pituitary gland (1999) Frontiers in Neuroendocrinology, 20 (1), pp. 71-95. , 10.1006/frne.1998.0176
  • Besedovsky, H.O., Del Rey, A., Immune-neuro-endocrine interactions: Facts and hypotheses (1996) Endocr Rev, 17 (1), pp. 64-102
  • Webster, J.I., Tonelli, L., Sternberg, E.M., Neuroendocrine regulation of immunity (2002) Annual Review of Immunology, 20, pp. 125-163. , 10.1146/annurev.immunol.20.082401.104914
  • Charmandari, E., Tsigos, C., Chrousos, G., Endocrinology of the stress response (2005) Annual Review of Physiology, 67, pp. 259-284. , 10.1146/annurev.physiol.67.040403.120816
  • Silverman, M.N., Sternberg, E.M., Glucocorticoid regulation of inflammation and its functional correlates: From HPA axis to glucocorticoid receptor dysfunction (2012) Ann N Y Acad Sci, 1261, pp. 55-63. , 10.1111/j.1749-6632.2012.06633.x
  • Newton, R., Holden, N.S., Separating transrepression and transactivation: A distressing divorce for the glucocorticoid receptor? (2007) Molecular Pharmacology, 72 (4), pp. 799-809. , http://molpharm.aspetjournals.org/cgi/reprint/72/4/799, 10.1124/mol.107.038794
  • De Bosscher, K., Beck, I.M., Haegeman, G., Classic glucocorticoids versus non-steroidal glucocorticoid receptor modulators: Survival of the fittest regulator of the immune system (2010) Brain Behav Immun, 24 (7), pp. 1035-1042. , 10.1016/j.bbi.2010.06.010
  • De Kloet, E.R., Vreugdenhil, E., Oitzl, M.S., Joels, M., Brain corticosteroid receptor balance in health and disease (1998) Endocrine Reviews, 19 (3), pp. 269-301
  • Anacker, C., Zunszain, P.A., Carvalho, L.A., Pariante, C.M., The glucocorticoid receptor: Pivot of depression and of antidepressant treatment (2011) Psychoneuroendocrinology, 36 (3), pp. 415-425. , 10.1016/j.psyneuen.2010.03.007
  • Pariante, C.M., Lightman, S.L., The HPA axis in major depression: Classical theories and new developments (2008) Trends Neurosci, 31 (9), pp. 464-468. , 10.1016/j.tins.2008.06. 006
  • Oakley, R.H., Cidlowski, J.A., Cellular processing of the glucocorticoid receptor gene and protein: New mechanisms for generating tissue-specific actions of glucocorticoids (2011) J Biol Chem, 286 (5), pp. 3177-3184. , 10.1074/jbc.R110.179325
  • Kino, T., Su, Y.A., Chrousos, G.P., Human glucocorticoid receptor isoform beta: Recent understanding of its potential implications in physiology and pathophysiology (2009) Cell Mol Life Sci, 66 (21), pp. 3435-3448. , 10.1007/s00018-009-0098-z
  • Gross, K.L., Cidlowski, J.A., Tissue-specific glucocorticoid action: A family affair (2008) Trends Endocrinol Metab, 19 (9), pp. 331-339. , 10.1016/j.tem.2008.07.009
  • Orti, E., Mendel, D.B., Smith, L.I., Munck, A., Agonist-Dependent phosphorylation and nuclear dephosphorylation of glucocorticoid receptors in intact cells (1989) Journal of Biological Chemistry, 264 (17), pp. 9728-9731
  • Wang, Z., Frederick, J., Garabedian, M.J., Deciphering the phosphorylation -code- of the glucocorticoid receptor in vivo (2002) Journal of Biological Chemistry, 277 (29), pp. 26573-26580. , 10.1074/jbc.M110530200
  • Wang, Z., Chen, W., Kono, E., Dang, T., Garabedian, M.J., Modulation of glucocorticoid receptor phosphorylation and transcriptional activity by a C-Terminal-Associated protein phosphatase (2007) Mol Endocrinol, 21 (3), pp. 625-634. , 10.1210/me.2005-0338
  • Blind, R.D., Garabedian, M.J., Differential recruitment of glucocorticoid receptor phospho-isoforms to glucocorticoidinduced genes (2008) J Steroid Biochem Mol Biol, 109 (1-2), pp. 150-157. , 10.1016/j.jsbmb.2008.01.002
  • Galliher-Beckley, A.J., Williams, J.G., Cidlowski, J.A., Ligandindependent phosphorylation of the glucocorticoid receptor integrates cellular stress pathways with nuclear receptor signaling (2011) Mol Cell Biol, 31 (23), pp. 4663-4675. , 10.1128/MCB.05866-11
  • Webster, J.C., Jewell, C.M., Bodwell, J.E., Munck, A., Sar, M., Cidlowski, J.A., Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein (1997) Journal of Biological Chemistry, 272 (14), pp. 9287-9293. , 10.1074/jbc.272.14.9287
  • Guidotti, G., Calabrese, F., Anacker, C., Racagni, G., Pariante, C.M., Riva, M.A., Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic stress: Modulation by antidepressant treatment (2013) Neuropsychopharmacology, 38 (4), pp. 616-627. , 10.1038/ npp.2012.225
  • Anacker, C., Zunszain, P.A., Cattaneo, A., Carvalho, L.A., Garabedian, M.J., Thuret, S., Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor (2011) Mol Psychiatry, 16 (7), pp. 738-750. , 10.1038/mp.2011.26
  • Weigel, N.L., Moore, N.L., Kinases and protein phosphorylation as regulators of steroid hormone action (2007) Nucl Recept Signal, 5, pp. e005. , 10.1621/nrs.05005
  • Trepel, J., Mollapour, M., Giaccone, G., Neckers, L., Targeting the dynamic HSP90 complex in cancer (2010) Nat Rev Cancer, 10 (8), pp. 537-549. , 10.1038/nrc2887
  • Trevino, L.S., Weigel, N.L., Phosphorylation: A fundamental regulator of steroid receptor action (2013) Trends Endocrinol Metab, 24 (10), pp. 515-524. , 10.1016/ j.tem.2013.05.008
  • Ito, K., Yamamura, S., Essilfie-Quaye, S., Cosio, B., Ito, M., Barnes, P.J., Adcock, I.M., Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappa;B suppression (2006) Journal of Experimental Medicine, 203 (1), pp. 7-13. , http://www.jem.org/cgi/reprint/203/1/7, 10.1084/jem.20050466
  • Nader, N., Chrousos, G.P., Kino, T., Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: Potential physiological implications (2009) FASEB J., 23 (5), pp. 1572-1583. , 10.1096/fj.08-117697
  • Scroggins, B.T., Robzyk, K., Wang, D., Marcu, M.G., Tsutsumi, S., Beebe, K., Cotter, R.J., Neckers, L., An acetylation site in the middle domain of hsp90 regulates chaperone function (2007) Molecular Cell, 25 (1), pp. 151-159. , 10.1016/j.molcel.2006.12.008, PII S1097276506008446
  • Kovacs, J.J., Murphy, P.J., Gaillard, S., Zhao, X., Wu, J.T., Nicchitta, C.V., HDAC6 regulates Hsp90 acetylation and chaperone-Dependent activation of glucocorticoid receptor (2005) Mol Cell, 18 (5), pp. 601-607. , 10.1016/ j.molcel.2005 04021
  • Murphy, P.J.M., Morishima, Y., Kovacs, J.J., Yao, T.-P., Pratt, W.B., Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone (2005) Journal of Biological Chemistry, 280 (40), pp. 33792-33799. , 10.1074/jbc.M506997200
  • Wallace, A.D., Cidlowski, J.A., Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids (2001) J Biol Chem, 276 (46), pp. 42714-42721. , 10.1074/jbc.M106033200
  • Deroo, B.J., Rentsch, C., Sampath, S., Young, J., DeFranco, D.B., Archer, T.K., Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking (2002) Molecular and Cellular Biology, 22 (12), pp. 4113-4123. , 10.1128/MCB.22.12.4113-4123.2002
  • Rechsteiner, M., Rogers, S.W., PEST sequences and regulation by proteolysis (1996) Trends in Biochemical Sciences, 21 (7), pp. 267-271. , 10.1016/0968-0004(96)10031-1
  • Wallace, A.D., Cao, Y., Chandramouleeswaran, S., Cidlowski, J.A., Lysine 419 targets human glucocorticoid receptor for proteasomal degradation (2010) Steroids, 75 (12), pp. 1016-1023. , 10.1016/j.steroids.2010.06.015
  • Kinyamu, H.K., Archer, T.K., Proteasome activity modulates chromatin modifications and RNA polymerase II phosphorylation to enhance glucocorticoid receptor-mediated transcription (2007) Molecular and Cellular Biology, 27 (13), pp. 4891-4904. , 10.1128/MCB.02162-06
  • Kinyamu, H.K., Chen, J., Archer, T.K., Linking the ubiquitin-proteasome pathway to chromatin remodeling/modification by nuclear receptors (2005) Journal of Molecular Endocrinology, 34 (2), pp. 281-297. , 10.1677/jme.1.01680
  • Stavreva, D.A., Muller, W.G., Hager, G.L., Smith, C.L., McNally, J.G., Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes (2004) Molecular and Cellular Biology, 24 (7), pp. 2682-2697. , 10.1128/MCB.24.7.2682-2697.2004
  • Sapolsky, R.M., McEwen, B.S., Down-regulation of neural corticosterone receptors by corticosterone and dexamethasone (1985) Brain Research, 339 (1), pp. 161-165. , 10.1016/0006-8993(85)90638-9
  • Wang, X., Pongrac, J.L., DeFranco, D.B., Glucocorticoid receptors in hippocampal neurons that do not engage proteasomes escape from hormone-Dependent down-regulation but maintain transactivation activity (2002) Molecular Endocrinology, 16 (9), pp. 1987-1998. , 10.1210/me.2001-0287
  • Conway-Campbell, B.L., McKenna, M.A., Wiles, C.C., Atkinson, H.C., De Kloet, E.R., Lightman, S.L., Proteasome-Dependent down-regulation of activated nuclear hippocampal glucocorticoid receptors determines dynamic responses to corticosterone (2007) Endocrinology, 148 (11), pp. 5470-5477. , http://endo.endojournals.org/cgi/reprint/148/11/5470, 10.1210/en.2007-0585
  • Connell, P., Ballinger, C.A., Jiang, J., Wu, Y., Thompson, L.J., Hohfeld, J., The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins (2001) Nat Cell Biol, 3 (1), pp. 93-96. , 10.1038/ 35050618
  • Wang, X., DeFranco, D.B., Alternative effects of the ubiquitin-proteasome pathway on glucocorticoid receptor down-regulation and transactivation are mediated by CHIP, an E3 ligase (2005) Molecular Endocrinology, 19 (6), pp. 1474-1482. , http://mend.endojournals.org/cgi/reprint/19/6/1474, 10.1210/me.2004-0383
  • Qian, S.B., McDonough, H., Boellmann, F., Cyr, D.M., Patterson, C., CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70 (2006) Nature, 440 (7083), pp. 551-555. , 10.1038/nature04600
  • Morales, J.L., Perdew, G.H., Carboxyl terminus of hsc70-interacting protein (CHIP) can remodel mature Aryl hydrocarbon Receptor (AhR) complexes and mediate ubiquitination of both the AhR and the 90 kDa heat-shock protein (hsp90) in vitro (2007) Biochemistry, 46 (2), pp. 610-621. , 10.1021/bi062165b
  • Kundrat, L., Regan, L., Identification of residues on Hsp70 and Hsp90 ubiquitinated by the cochaperone CHIP (2010) J Mol Biol, 395 (3), pp. 587-594. , 10.1016/j.jmb.2009.11.017
  • Yan, F., Gao, X., Lonard, D.M., Nawaz, Z., Specific ubiquitin-conjugating enzymes promote degradation of specific nuclear receptor coactivators (2003) Molecular Endocrinology, 17 (7), pp. 1315-1331. , 10.1210/me.2002-0209
  • Hay, R.T., SUMO: A history of modification (2005) Molecular Cell, 18 (1), pp. 1-12. , 10.1016/j.molcel.2005.03.012
  • Gareau, J.R., Lima, C.D., The SUMO pathway: Emerging mechanisms that shape specificity, conjugation and recognition (2010) Nat Rev Mol Cell Biol, 11 (12), pp. 861-871. , 10.1038/nrm3011
  • Poukka, H., Karvonen, U., Janne, O.A., Palvimo, J.J., Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1 (2000) Proceedings of the National Academy of Sciences of the United States of America, 97 (26), pp. 14145-14150. , 10.1073/pnas.97.26.14145
  • Le Drean, Y., Mincheneau, N., Le Goff, P., Michel, D., Potentiation of glucocorticoid receptor transcriptional activity by sumoylation (2002) Endocrinology, 143 (9), pp. 3482-3489. , 10.1210/en.2002-220135
  • Golebiowski, F., Matic, I., Tatham, M.H., Cole, C., Yin, Y., Nakamura, A., System-wide changes toSUMOmodifications in response to heat shock (2009) Sci Signal, 2 (72), pp. ra24. , 10.1126/scisignal.2000282
  • Tian, S., Poukka, H., Palvimo, J.J., Janne, O.A., Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor (2002) Biochemical Journal, 367 (3), pp. 907-911. , 10.1042/BJ20021085
  • Holmstrom, S., Van Antwerp, M.E., Iniguez-Lluhi, J.A., Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (26), pp. 15758-15763. , 10.1073/pnas.2136933100
  • Iniguez-Lluhi, J.A., Pearce, D., A common motif within the negative regulatory regions of multiple factors inhibits their transcriptional synergy (2000) Molecular and Cellular Biology, 20 (16), pp. 6040-6050. , 10.1128/MCB.20.16.6040-6050.2000
  • Holmstrom, S.R., Chupreta, S., So, A.Y., Iniguez-Lluhi, J.A., SUMO-mediated inhibition of glucocorticoid receptor synergistic activity depends on stable assembly at the promoter but not onDAXX (2008) Mol Endocrinol, 22 (9), pp. 2061-2075. , 10.1210/me.2007-0581
  • Carbia-Nagashima, A., Gerez, J., Perez-Castro, C., Paez-Pereda, M., Silberstein, S., Stalla, G.K., Holsboer, F., Arzt, E., Rsume, a small rwd-containing protein, enhances sumo conjugation and stabilizes hif-1α1; during hypoxia (2007) Cell, 131 (2), pp. 309-323. , 10.1016/j.cell.2007.07.044, PII S0092867407010240
  • Druker, J., Liberman, A.C., Antunica-Noguerol, M., Gerez, J., Paez-Pereda, M., Rein, T., Rsume enhances glucocorticoid receptor sumoylation and transcriptional activity (2013) Mol Cell Biol, 33 (11), pp. 2116-2127. , 10.1128/MCB.01470-12
  • Kotaja, N., Karvonen, U., Janne, O.A., Palvimo, J.J., The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1 (2002) J Biol Chem, 277 (33), pp. 30283-30288. , 10.1074/jbc.M204768200
  • Paakinaho, V., Kaikkonen, S., Makkonen, H., Benes, V., Palvimo, J.J., SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor (2013) Nucleic Acids Res, , 10.1093/nar/gkt1033
  • Gottlicher, M., Heck, S., Doucas, V., Wade, E., Kullmann, M., Cato, A.C.B., Evans, R.M., Herrlich, P., Interaction of the Ubc9 human homologue with c-Jun and with the glucocorticoid receptor (1996) Steroids, 61 (4), pp. 257-262. , 10.1016/0039-128X(96)00032-3, PII S0039128X96000325
  • Kaul, S., Blackford Jr., J.A., Cho, S., Stoney Simons Jr., S., Ubc9 is a novel modulator of the induction properties of glucocorticoid receptors (2002) Journal of Biological Chemistry, 277 (15), pp. 12541-12549. , 10.1074/jbc.M112330200
  • Cho, S., Kagan, B.L., Blackford Jr., J.A., Szapary, D., Simons Jr., S.S., Glucocorticoid receptor ligand binding domain is sufficient for the modulation of glucocorticoid induction properties by homologous receptors, coactivator transcription intermediary factor 2, and Ubc9 (2005) Molecular Endocrinology, 19 (2), pp. 290-311. , 10.1210/me.2004-0134
  • Kotaja, N., Aittomaki, S., Silvennoinen, O., Palvimo, J.J., Janne, O.A., ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-Dependent transcriptional activation (2000) Molecular Endocrinology, 14 (12), pp. 1986-2000. , 10.1210/me.14.12.1986
  • Tirard, M., Jasbinsek, J., Almeida, O.F.X., Michaelidis, T.M., The manifold actions of the protein inhibitor of activated STAT proteins on the transcriptional activity of mineralocorticoid and glucocorticoid receptors in neural cells (2004) Journal of Molecular Endocrinology, 32 (3), pp. 825-841. , 10.1677/jme.0.0320825

Citas:

---------- APA ----------
Antunica-Noguerol, M., Aprile-Garcia, F., Budziñski, M.L., Proto-Cassina, L., Liberman, A.C. & Arzt, E. (2014) . The interplay between the glucocorticoid receptor activity and post-translational modifications in the immune and neuroendocrine systems. Advances in Neuroimmune Biology, 5(1), 19-32.
http://dx.doi.org/10.3233/NIB-140083
---------- CHICAGO ----------
Antunica-Noguerol, M., Aprile-Garcia, F., Budziñski, M.L., Proto-Cassina, L., Liberman, A.C., Arzt, E. "The interplay between the glucocorticoid receptor activity and post-translational modifications in the immune and neuroendocrine systems" . Advances in Neuroimmune Biology 5, no. 1 (2014) : 19-32.
http://dx.doi.org/10.3233/NIB-140083
---------- MLA ----------
Antunica-Noguerol, M., Aprile-Garcia, F., Budziñski, M.L., Proto-Cassina, L., Liberman, A.C., Arzt, E. "The interplay between the glucocorticoid receptor activity and post-translational modifications in the immune and neuroendocrine systems" . Advances in Neuroimmune Biology, vol. 5, no. 1, 2014, pp. 19-32.
http://dx.doi.org/10.3233/NIB-140083
---------- VANCOUVER ----------
Antunica-Noguerol, M., Aprile-Garcia, F., Budziñski, M.L., Proto-Cassina, L., Liberman, A.C., Arzt, E. The interplay between the glucocorticoid receptor activity and post-translational modifications in the immune and neuroendocrine systems. Adv. Neuroimmun. Biol. 2014;5(1):19-32.
http://dx.doi.org/10.3233/NIB-140083