Artículo

Estarellas, C.; Capece, L.; Seira, C.; Bidon-Chanal, A.; Estrin, D.A.; Luque, F.J.; Christov C.Z. "Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways" (2016) Advances in Protein Chemistry and Structural Biology. 105:59-80
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Globins are a family of proteins characterized by the presence of the heme prosthetic group and involved in variety of biological functions in the cell. Due to their biological relevance and widespread distribution in all kingdoms of life, intense research efforts have been devoted to disclosing the relationships between structural features, protein dynamics, and function. Particular attention has been paid to the impact of differences in amino acid sequence on the topological features of docking sites and cavities and to the influence of conformational flexibility in facilitating the migration of small ligands through these cavities. Often, tunnels are carved in the interior of globins, and ligand exchange is regulated by gating residues. Understanding the subtle intricacies that relate the differences in sequence with the structural and dynamical features of globins with the ultimate aim of rationalizing the thermodynamics and kinetics of ligand binding continues to be a major challenge in the field. Due to the evolution of computational techniques, significant advances into our understanding of these questions have been made. In this review we focus our attention on the analysis of the ligand migration pathways as well as the function of the structural cavities and tunnels in a series of representative globins, emphasizing the synergy between experimental and theoretical approaches to gain a comprehensive knowledge into the molecular mechanisms of this diverse family of proteins. © 2016 Elsevier Inc.

Registro:

Documento: Artículo
Título:Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways
Autor:Estarellas, C.; Capece, L.; Seira, C.; Bidon-Chanal, A.; Estrin, D.A.; Luque, F.J.; Christov C.Z.
Filiación:Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, Santa Coloma de Gramenet, Spain
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, INQUIMAE-CONICET, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
Palabras clave:Globin; Inner cavities; Ligand migration; Protein dynamics; Structure–function relationships; carboxyhemoglobin; disulfide; globin; hemoglobin; ligand; myoglobin; neuroglobin; truncated hemoglobin; globin; amino acid sequence; association constant; binding affinity; crystal structure; disulfide bond; human; hydrogen bond; ligand binding; molecular dynamics; nonhuman; plasticity; protein conformation; protein function; protein structure; structure activity relation; thermodynamics; chemistry; Globins; Ligands; Protein Conformation; Structure-Activity Relationship
Año:2016
Volumen:105
Página de inicio:59
Página de fin:80
DOI: http://dx.doi.org/10.1016/bs.apcsb.2016.07.002
Título revista:Advances in Protein Chemistry and Structural Biology
Título revista abreviado:Adv. Protein Chem. Struct. Biol.
ISSN:18761623
CAS:carboxyhemoglobin, 9061-29-4; disulfide, 16734-12-6; hemoglobin, 9008-02-0; Globins; Ligands
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18761623_v105_n_p59_Estarellas

Referencias:

  • Abbruzzetti, S., Spyrakis, F., Bidon-Chanal, A., Luque, F.J., Viappiani, C., Ligand migration through hemeprotein cavities: Insights from laser flash photolysis and molecular dynamics simulations (2013) Physical Chemistry Chemical Physics, 15, pp. 10686-10701
  • Anselmi, M., DiNola, A., Amadei, A., Kinetics of carbon monoxide migration and binding in solvated neuroglobin as revealed by molecular dynamics simulations and quantum mechanical calculations (2011) Journal of Physical Chemistry B, 115, pp. 2436-2446
  • Arroyo-Máñez, P., Bikiel, D.E., Boechi, L., Capece, L., Di Lella, S., Estrín, D.A., Protein dynamics and ligand migration interplay as studied by computer simulation (2011) Biochimica et Biophysica Acta, 1814, pp. 913-1106
  • Banushkina, P., Meuwly, M., Free-energy barriers in MbCO rebinding (2005) Journal of Physical Chemistry B, 109, pp. 16911-16917
  • Bidon-Chanal, A., Martí, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N (2006) Proteins, 64, pp. 457-464
  • Bidon-Chanal, A., Martí, M.A., Estrín, D.A., Luque, F.J., Dynamical regulation of ligand migration by a gate-opening molecular switch in truncated hemoglobin-N from Mycobacterium tuberculosis (2007) Journal of the American Chemical Society, 129, pp. 6782-6788
  • Birukou, I., Schweers, R.L., Olson, J.S., Distal histidine stabilizes bound O2 and acts as a gate for ligand entry in both subunits of adult human hemoglobin (2010) Journal of Biological Chemistry, 285, pp. 8840-8854
  • Birukou, I., Soman, J., Olson, J.S., Blocking the gate to ligand entry in human hemoglobin (2011) Journal of Biological Chemistry, 286, pp. 10515-10529
  • Bocahut, A., Bernad, S., Sebban, P., Sacquin-Mora, S., Relating the diffusion of small ligands in human neuroglobin to its structural and mechanical properties (2009) The Journal of Physical Chemistry. B, 113, pp. 16257-16267
  • Boechi, L., Arrar, M., Martí, M.A., Olson, J.S., Roitberg, A.E., Estrín, D.A., Hydrophobic effect drives oxygen uptake in myoglobin (2013) Journal of Biological Chemistry, 288, pp. 6754-6762
  • Boechi, L., Máñez, P.A., Luque, F.J., Martí, A.M., Estrín, D.A., Unraveling the molecular basis for ligand binding in truncated hemoglobins: The trHbO Bacillus subtilis case (2010) Proteins, 78, pp. 962-970
  • Boechi, L., Martí, M.A., Milani, M., Bolognesi, M., Luque, F.J., Estrín, D.A., Structural determinants of ligand migration in Mycobacterium tuberculosis truncated hemoglobin O (2008) Proteins, 73, pp. 372-379
  • Bolognesi, M., Bordo, D., Rizzi, M., Tarricone, C., Ascenzi, P., Nonvertebrate hemoglobins: Structural bases for reactivity (1997) Progress in Biophysics and Molecular Biology, 68, pp. 29-68
  • Boron, I., Bustamante, J.P., Davidge, K.S., Singh, S., Bowman, L.A., Tinajero-Trejo, M., Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules (2015) F1000 Research, 4, p. 22
  • Boron, I., Capece, L., Pennacchietti, F., Wetzler, D.E., Bruno, S., Abbruzzetti, S., Engineered chimeras reveal the structural basis of hexacoordination in globins: A case study of neuroglobin and myoglobin (2015) Biochimica et Biophysica Acta, 1850, pp. 169-177
  • Bossa, C., Amadei, A., Daidone, I., Anselmi, M., Vallone, B., Brunori, M., Molecular dynamics simulation of sperm whale myoglobin: Effects of mutations and trapped CO on the structure and dynamics of cavities (2005) Biophysical Journal, 89, pp. 465-474
  • Bossa, C., Anselmi, M., Di Nola, A., Extended molecular dynamics simulation of the carbon monoxide migration in sperm whale myoglobin (2004) Biophysical Journal, 86, pp. 3855-3862
  • Brunori, M., Vallone, B., Neuroglobin, seven years after (2007) Cellular and Molecular Life Sciences, 64, pp. 1259-1268
  • Burmester, T., Hankeln, T., What is the function of neuroglobin? (2009) Journal of Experimental Biology, 212, pp. 1423-1428
  • Burmester, T., Weich, B., Reinhardt, S., Hankeln, T., A vertebrate globin expressed in the brain (2000) Nature, 407, pp. 520-523
  • Capece, L., Boechi, L., Perissinotti, L.L., Arroyo-Máñez, P., Bikiel, D.E., Smulevich, G., Small ligand-globin interactions: Reviewing lessons derived from computer simulation (2013) Biochimica et Biophysica Acta, 1834, pp. 1722-1738
  • Capece, L., Martí, M.A., Bidon-Chanal, A., Nadra, A., Luque, F.J., Estrín, D.A., High pressure reveals structural determinants for globin hexacoordination: Neuroglobin and myoglobin cases (2009) Proteins, 75, pp. 885-894
  • Cazade, P.A., Zheng, W., Prada-Gracia, D., Berezovska, G., Rao, F., Clementi, C., A comparative analysis of clustering algorithms: O2 migration in truncated hemoglobin I from transition networks (2015) Journal of Chemical Physics, 142, p. 025103
  • Cho, H.S., Dashdorj, N., Schotte, F., Graber, T., Henning, R., Anfinrud, P., Protein structural dynamics in solution unveiled via 100-ps time-resolved X-ray scattering (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 7281-7728
  • Cohen, J., Arkhipov, A., Braun, R., Schulten, K., Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin (2006) Biophysical Journal, 91, pp. 1844-1857
  • Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpí, J.L., Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism (2005) Journal of the American Chemical Society, 127, pp. 4433-4444
  • Forti, F., Boechi, L., Bikiel, D., Martí, M.A., Nardini, M., Bolognesi, M., Ligand migration in Methanosarcina acetivorans protoglobin: Effects of ligand binding and dimeric assembly (2011) Journal of Physical Chemistry B, 115, pp. 13771-13780
  • Frauenfelder, H., McMahon, B.H., Fenimore, P.W., Myoglobin: The hydrogen atom of biology and a paradigm of complexity (2003) Proceedings of the National Academy of Sciences of the United States of America, 100, pp. 8615-8617
  • Freitas, T.A.K., Hou, S., Dioum, E.M., Saito, J.A., Newhouse, J., González, G., Ancestral hemoglobins in Archaea (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 6675-6680
  • Geuens, E., Dewilde, S., Hoogewijs, D., Pesce, A., Nienhaus, K., Nienhaus, G.U., Nerve globins in invertebrates (2004) IUBMB Life, 56, pp. 653-656
  • Hamdane, D., Kiger, L., Dewilde, S., Green, B.N., Pesce, A., Uzan, J., The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin (2003) Journal of Biological Chemistry, 278, pp. 51713-51721
  • Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R.G., Wyckoff, H., Phillips, D.C., A three-dimensional model of the myoglobin molecule obtained by X-ray analysis (1958) Nature, 181, pp. 662-666
  • Laberge, M., Yonetani, T., Common dynamics of globin family proteins (2007) IUBMB Life, 59, pp. 528-534
  • Lama, A., Pawaria, S., Bidon-Chanal, A., Anand, A., Gelpí, J.L., Arya, S., Role of pre-A motif in nitric oxide scavenging by truncated hemoglobin, HbN, of Mycobacterium tuberculosis (2009) Journal of Biological Chemistry, 284, pp. 14457-14468
  • Lama, A., Pawaria, S., Dikshit, K.L., Oxygen binding and NO scavenging properties of truncated hemoglobin, HbN, of Mycobacterium smegmatis (2006) FEBS Letters, 580, pp. 4031-4041
  • Lucas, F., Guallar, V., An atomistic view on human hemoglobin carbon monoxide migration processes (2012) Biophysical Journal, 102, pp. 887-896
  • Martí, M.A., Bikiel, D.E., Crespo, A., Nardini, M., Bolognesi, M., Estrín, D.A., Two distinct heme distal site states define Cerebratulus lacteus mini-hemoglobin oxygen affinity (2006) Proteins, 62, pp. 641-648
  • Mishra, S., Meuwly, M., Quantitative analysis of ligand migration from transition networks (2010) Biophysical Journal, 99, pp. 3969-3978
  • Mouawad, L., Marechal, J.-D., Perahia, D., Internal cavities and ligand passageways in human hemoglobin characterized by molecular dynamics simulations (2005) Biochimica et Biophysica Acta, 1724, pp. 385-393
  • Mukai, M., Ouellet, Y., Guertin, M., Yeh, S.-R., NO binding induced conformational changes in a truncated hemoglobin from Mycobacterium tuberculosis (2004) Biochemistry, 43, pp. 2764-2770
  • Nadra, A.D., Martí, M.A., Pesce, A., Bolognesi, M., Estrín, D.A., Exploring the molecular basis of heme coordination in human neuroglobin (2008) Proteins, 71, pp. 695-705
  • Nardini, M., Thijs, L., Saito, J.A., Dewilde, S., Alam, M., Ascenzi, P., Archaeal protoglobin structure indicates new ligand diffusion paths and modulation of haem-reactivity (2008) EMBO Reports, 9, pp. 157-163
  • Nutt, D.R., Meuwly, M., CO migration in native and mutant myoglobin: Atomistic simulations for the understanding of protein function (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 5998-6002
  • Oliveira, A., Singh, S., Bidon-Chanal, A., Forti, F., Martí, M.A., Boechi, L., Role of PheE15 gate in ligand entry and nitric oxide detoxification function of Mycobacterium tuberculosis truncated hemoglobin N (2012) PloS One, 7, p. e49291
  • Olson, J.S., Soman, J., Phillips, G.N., Jr., Ligand pathways in myoglobin: A review of Trp cavity mutations (2007) IUBMB Life, 59, pp. 552-562
  • Pathania, R., Navani, N.K., Gardner, A.M., Gardner, P.R., Dikshit, K.L., Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli (2002) Molecular Microbiology, 45, pp. 1303-1314
  • Pesce, A., Bustamante, J.P., Bidon-Chanal, A., Boechi, L., Estrin, D.A., Luque, F.J., The N-terminal pre-A region of Mycobacterium tuberculosis 2/2HbN promotes NO-dioxygenase activity (2016) FEBS Journal, 283, pp. 305-322
  • Pesce, A., Dewilde, S., Kiger, L., Milani, M., Ascenzi, P., Marden, M.C., Very high resolution structure of a trematode hemoglobin displaying a TyrB10-TyrE7 heme distal residue pair and high oxygen affinity (2001) Journal of Molecular Biology, 309, pp. 1153-1164
  • Pesce, A., Milani, M., Nardini, M., Bolognesi, M., Mapping heme-ligand tunnels in group I truncated (2/2) hemoglobins (2008) Methods in Enzymology, 436, pp. 303-315
  • Pesce, A., Nardini, M., Ascenzi, P., Geuens, E., Dewilde, S., Moens, L., Thr-E11 regulates O2 affinity in Cerebratulus lacteus mini-hemoglobin (2004) Journal of Biological Chemistry, 279, pp. 33662-33672
  • Pesce, A., Nardini, M., Dewilde, S., Capece, L., Martí, M.A., Congia, S., Ligand migration in the apolar tunnel of Cerebratulus lacteus mini-hemoglobin (2011) Journal of Biological Chemistry, 286, pp. 5347-5358
  • Ruscio, J.Z., Kumar, D., Shukla, M., Prisant, M.G., Murali, T.M., Onufriev, A.V., Atomic level computational identification of ligand migration pathways between solvent and binding site in myoglobin (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 9204-9920
  • Salter, M.D., Blouin, G.C., Soman, J., Singleton, E.W., Dewilde, S., Moens, L., Determination of ligand pathways in globins: Apolar tunnels versus polar gates (2012) Journal of Biological Chemistry, 287, pp. 33163-33178
  • Salter, M.D., Nienhaus, K., Nienhaus, G.U., Dewilde, S., Moens, L., Pesce, A., The apolar channel in Cerebratulus lacteus hemoglobin is the route for O2 entry and exit (2008) Journal of Biological Chemistry, 283, pp. 35689-35702
  • Sanctis, D., Dewilde, S., Pesce, A., Moens, L., Ascenzi, P., Hankeln, T., Mapping protein matrix cavities in human cytoglobin through Xe atom binding (2004) Biochemical and Biophysical Research Communications, 316, pp. 1217-1221
  • Schmidt, M., Nienhaus, K., Pahl, R., Krasselt, A., Anderson, S., Parak, F., Ligand migration pathway and protein dynamics in myoglobin: A time-resolved crystallographic study on L29W MbCO (2005) Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 11704-11709
  • Schotte, F., Lim, M., Jackson, T.A., Smirnov, A.V., Soman, J., Olson, J.S., Watching a protein as it functions with 150-ps time-resolved x-ray crystallography (2003) Science, 300, pp. 1944-1947
  • Scott, E.E., Gibson, O.H., Olson, J.S., Mapping the pathways for O2 entry into and exit from myoglobin (2001) Journal of Biological Chemistry, 276, pp. 5177-5188
  • Tejero, J., Gladwin, M.T., The globin superfamily: Functions in nitric oxide formation and decay (2014) Biological Chemistry, 395, pp. 631-639
  • Tilton, R.F., Kuntz, I.D., Petsko, G.A., Cavities in proteins: Structure of a metmyoglobin-xenon complex solved to 1.9 A (1984) Biochemistry, 23, pp. 2849-2857
  • Tomita, A., Sato, T., Ichiyanagi, K., Nozawa, S., Ichikawa, H., Chollet, M., Visualizing breathing motion of internal cavities in concert with ligand migration in myoglobin (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 2612-2616
  • Vandergon, T.L., Riggs, C.K., Gorr, T.A., Colacino, J.M., Riggs, A.F., The mini-hemoglobins in neural and body wall tissue of the nemertean worm, Cerebratulus lacteus (1998) Journal of Biological Chemistry, 273, pp. 16998-17011
  • Vinogradov, S.N., Moens, L., Diversity of globin function: Enzymatic, transport, storage, and sensing (2008) Journal of Biological Chemistry, 283, pp. 8773-8777
  • Wajcman, H., Kiger, L., Marden, M.C., Structure and function evolution in the superfamily of globins (2009) Comptes Rendus Biologies, 332, pp. 273-282
  • Wang, P.-H., Best, R.B., Blumberger, J., A microscopic model for gas diffusion dynamics in a [NiFe]-hydrogenase (2011) Physical Chemistry Chemical Physics, 13, pp. 7708-7719
  • Yeh, S.-R., Couture, M., Ouellet, Y., Guertin, M., Rousseau, D.L., A cooperative oxygen binding hemoglobin from Mycobacterium tuberculosis. Stabilization of heme ligands by a distal tyrosine residue (2000) Journal of Biological Chemistry, 275, pp. 1679-1684

Citas:

---------- APA ----------
Estarellas, C., Capece, L., Seira, C., Bidon-Chanal, A., Estrin, D.A., Luque, F.J. & Christov C.Z. (2016) . Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways. Advances in Protein Chemistry and Structural Biology, 105, 59-80.
http://dx.doi.org/10.1016/bs.apcsb.2016.07.002
---------- CHICAGO ----------
Estarellas, C., Capece, L., Seira, C., Bidon-Chanal, A., Estrin, D.A., Luque, F.J., et al. "Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways" . Advances in Protein Chemistry and Structural Biology 105 (2016) : 59-80.
http://dx.doi.org/10.1016/bs.apcsb.2016.07.002
---------- MLA ----------
Estarellas, C., Capece, L., Seira, C., Bidon-Chanal, A., Estrin, D.A., Luque, F.J., et al. "Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways" . Advances in Protein Chemistry and Structural Biology, vol. 105, 2016, pp. 59-80.
http://dx.doi.org/10.1016/bs.apcsb.2016.07.002
---------- VANCOUVER ----------
Estarellas, C., Capece, L., Seira, C., Bidon-Chanal, A., Estrin, D.A., Luque, F.J., et al. Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways. Adv. Protein Chem. Struct. Biol. 2016;105:59-80.
http://dx.doi.org/10.1016/bs.apcsb.2016.07.002