Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development. Combined with results from a field meteorological station, it is found that the gravel components can initially only move under gusty conditions, with the impact of saltating pumice and sand lowering threshold. Pumices can saltate without the impact of sand, implying that they are both an impelling force for other pumices and lithics, and are the most likely clast constituent to undergo transport. Accumulation into bedforms in the tunnel occurs when clasts self organize, with larger, more immobile particles holding others in place, a process that is accentuated in the field on local topographic highs of the undulating ignimbrite bedrock surface. In such an arrangement, pumices and especially lithics remain largely stable, with vibration the dominant mode of motion. This results in sand and silt entrapment and growth of the bedform through infiltration and uplift of the gravel. Resulting bedforms are gravel-mantled ripple-like forms cored with fine grained sediment. The Martian aeolian environment is similar to the Puna in terms of having grains of variable size, infrequent wind gusts, and saltating sand, implying that some TARs on the planet may have formed in a similar way. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments
Autor:Bridges, N.T.; Spagnuolo, M.G.; de Silva, S.L.; Zimbelman, J.R.; Neely, E.M.
Filiación:Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, United States
Oregon State Univ., Corvallis, OR 97331, United States
CEPS/NASM, Smithsonian Institution, Washington, DC 20013-7012, United States
Department of Geology, Portland State University, Portland, OR 97201, United States
IDEAN, UBA-CONICET Ciudad de Bs, As, Argentina
Palabras clave:Mars; Megaripples; Puna; Ripples; Threshold; Wind tunnel; eolian deposit; eolian process; fine grained sediment; gravel; Mars; ripple; threshold; wind tunnel; Argentina; Puna
Año:2015
Volumen:17
Página de inicio:49
Página de fin:60
DOI: http://dx.doi.org/10.1016/j.aeolia.2015.01.007
Título revista:Aeolian Research
Título revista abreviado:Aeolian Res.
ISSN:18759637
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18759637_v17_n_p49_Bridges

Referencias:

  • Almeida, M.P., Parteli, E.J.R., Andrade, J.S., Herrmann, H.J., Giant saltation on Mars (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 6222-6226
  • Andreotti, B., A two-species model of aeolian sand transport (2004) J. Fluid Mech., 510, pp. 47-70
  • Arvidson, R.E., Guinness, E.A., Moore, H.J., Tillman, J., Wall, S.D., 3 Mars years - Viking Lander 1 imaging investigations (1983) Science, 222, pp. 463-468
  • Bagnold, R.A., (1954) The Physics of Blown Sand and Desert Dunes, p. 265. , Dover Publications, Inc., Mineola, NY
  • Balme, M.R., Berman, D.C., Bourke, M.C., Zimbelman, J.R., Transverse aeolian ridges (TARs) on Mars (2008) Geomorphology, 101, pp. 703-720
  • Berman, B.C., Balme, M.R., Rafkin, S.C.R., Zimbelman, J.R., Transverse Aeolian Ridges (TARs) on Mars II: Distributions, orientations, and ages (2011) Icarus, 213, pp. 116-130
  • Bourke, M.C., Wilson, S.A., Zimbelman, J.R., The variability of transverse aeolian ridges in troughs on Mars (2003) Lun. Planet. Sci., 34, p. 2090
  • Bridges, N.T., Planet-wide sand motion on Mars (2012) Geology, 40, pp. 31-34
  • Bridges, N.T., Geissler, P., Silvestro, S., Banks, M., Bedform migration on Mars: current results and future plans (2013) Aeolian Res., 9
  • Christensen, P.R., Mineralogy at Meridiani Planum from the mini-TES experiment on the Opportunity rover (2004) Science, 306, pp. 1733-1739
  • de Silva, S., The largest wind ripples on Earth: comment (2010) Geology, 38, p. e218
  • de Silva, S.L., Spagnuolo, M.G., Bridges, N.T., Zimbelman, J.R., Gravel-mantled megaripples of the Argentinean Puna: a model for their origins and growth with implications for Mars (2013) Geol. Soc. Am. Bull., 125, pp. 1912-1929
  • Douillet, G., Rasmussen, K.R., Kueppers, U., Castro, D., Merrison, J.P., Iversen, J.J., Dingwell, D.B., Saltation threshold for pyroclasts at various bedslopes: wind tunnel measurements (2014) J. Volcanol. Geotherm. Res., pp. 14-24
  • Gillies, J.A., Nicking, W.G., Tilson, M., Furtak-Cole, E., Wind-formed gravel bed forms, Wright Valley, Antarctica (2012) J. Geophys. Res., 117
  • Golombek, M., Robinson, K., McEwen, A., Bridges, N., Ivanov, B., Tornabene, L., Sullivan, R., Constraints on ripple migration at Meridiani Planum from Opportunity and HiRISE observations of fresh crater (2010) J. Geophys. Res., 115
  • Greeley, R., Iversen, J.D., (1985) Wind as a Geological Process, p. 333. , Cambridge Univ. Press, Cambridge, UK
  • Iversen, J.D., White, B.R., Saltation threshold on Earth, Mars, and Venus (1982) Sedimentology, 29, pp. 111-119
  • Iversen, J.D., Pollack, J.B., Greeley, R., White, B.R., Saltation threshold on Mars: the effect of interparticle force, surface roughness, and low atmospheric density (1976) Icarus, 29, pp. 381-393
  • Kok, J.F., Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: implications for dunes and dust storms (2010) Phys. Rev. Lett., 104, p. 074502
  • Kok, J.F., Parteli, E.J.R., Michaels, T.I., Bou Karam, D., The physics of wind-blown sand and dust (2012) Rep. Prog. Phys., 75, p. 106901
  • Mandt, K., de Silva, S.L., Zimbelman, J.R., Crown, D.A., The origin of the Medusae Fossae Formation, Mars: insights from a synoptic approach (2008) J. Geophys. Res., 113
  • Mandt, K., de Silva, S.L., Zimbelman, J.R., Wyrick, D., Distinct erosional progressions in the Medusae Fossae Formation, Mars, indicate contrasting environmental conditions (2009) Icarus, 204, pp. 471-477
  • Milana, J.P., Largest wind ripples on Earth? (2009) Geology, 37, pp. 343-346
  • Milana, J.P., Forman, S., Krohling, D., The largest ripples on Earth: reply (2010) Geology, 38, pp. e219-e220
  • Montgomery, D.R., Bandfield, J.L., Becker, S.K., Periodic bedrock ridges on Mars (2012) J. Geophys. Res., 117
  • Moore, H.J., The Martian dust storm of Sol 1742 (1985) J. Geophys. Res., 90, pp. D163-D174
  • Scott, D.H., Tanaka, K.L., Ignimbrites of the Amazonis Planitia region of Mars (1982) J. Geophys. Res., 87, pp. 1179-1190
  • Squyres, S.W., In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars (2004) Science, 306, pp. 1709-1714
  • Sullivan, R., Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site (2005) Nature, 436
  • Ungar, J.E., Haff, P.K., Steady-state saltation in air (1987) Sedimentology, 34, pp. 289-299
  • Weitz, C.M., Soil grain analyses at Meridian Planum, Mars (2006) J. Geophys. Res., 111
  • White, B.R., Particle dynamics in two-phase flows (1986) Encyclopedia of Fluid Mechanics, , Gulf Publishing Company, Houston, TX, (Chapter 8)
  • White, B.R., Estimated grain saltation in a Martian atmosphere (1976) J. Geophys. Res., 81, pp. 5643-5650
  • Yizhaq, H., Kok, J.G., Katra, I., Basaltic sand ripples of Eagle Crater as indirect evidence for the hysteresis effect in Martian saltation (2014) Icarus, 230, pp. 143-150
  • Zimbelman, J.R., Transverse aeolian ridges on Mars: first result from HiRISE images (2010) Geomorphology, 121, pp. 22-29
  • Zimbelman, J.R., Scheidt, S.P., de Silva, S.L., Bridges, N.T., Spagnuolo, M.G., Roughness height measurements for megaripples in the Puna of Argentina, form flow over the largest megaripples and implications for Mars (2014) Lun. Planet. Sci., 45, p. 1359

Citas:

---------- APA ----------
Bridges, N.T., Spagnuolo, M.G., de Silva, S.L., Zimbelman, J.R. & Neely, E.M. (2015) . Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments. Aeolian Research, 17, 49-60.
http://dx.doi.org/10.1016/j.aeolia.2015.01.007
---------- CHICAGO ----------
Bridges, N.T., Spagnuolo, M.G., de Silva, S.L., Zimbelman, J.R., Neely, E.M. "Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments" . Aeolian Research 17 (2015) : 49-60.
http://dx.doi.org/10.1016/j.aeolia.2015.01.007
---------- MLA ----------
Bridges, N.T., Spagnuolo, M.G., de Silva, S.L., Zimbelman, J.R., Neely, E.M. "Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments" . Aeolian Research, vol. 17, 2015, pp. 49-60.
http://dx.doi.org/10.1016/j.aeolia.2015.01.007
---------- VANCOUVER ----------
Bridges, N.T., Spagnuolo, M.G., de Silva, S.L., Zimbelman, J.R., Neely, E.M. Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments. Aeolian Res. 2015;17:49-60.
http://dx.doi.org/10.1016/j.aeolia.2015.01.007