Artículo

Contreras, R.H.; Ferraro, M.B.; Ruiz de Azúa, M.C.; Aucar, G.A. "Brief account of nonrelativistic theory of NMR parameters" (2013) Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems. 3(1):9-39
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This chapter describes briefly chemical shifts (or nuclear magnetic shielding constants) and indirect spin-spin coupling constants. They are well known as powerful tools for studying several molecular properties which are very important in different branches of the broad field of molecular sciences. The present description is oriented to an interdisciplinary audience and therefore it is expected that it can be followed for readers without strong backgrounds either in mathematics or physics. After a short revision of basic concepts, a qualitative method devised to extract information on electronic molecular structures is described. This aim is achieved employing this qualitative method for relating such parameters known in different series of compounds with several common chemical interactions. Since both types of NMR parameters present second-rank tensor properties, it is discussed how such property is affected in molecules measured in isotropic phase. Anybody with mathematical and physical background would answer immediately, "in isotropic phase is only observed one-third of the respective tensor trace." However, in molecules that trace depends on the relative orientation of the Principal Axes System and bonds associated to the atom whose nuclear magnetic shielding is studied, or to the straight line connecting a pair of coupled nuclei. To describe these effects in this chapter is coined the expression "the geometric effect" to identify them. The same expression is also employed in Chapters 8 and 10Chapter 8Chapter 10. A list of exercises and appropriate references are included at the end of this chapter. © 2013 Elsevier B.V.

Registro:

Documento: Artículo
Título:Brief account of nonrelativistic theory of NMR parameters
Autor:Contreras, R.H.; Ferraro, M.B.; Ruiz de Azúa, M.C.; Aucar, G.A.
Filiación:Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and IFIBA, CONICET, Ciudad Universitaria, Pabellón 1 (C1428EHA), Buenos Aires, Argentina
Dpto. de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina
Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina and IMIT Institute, CONICET-UNNE, Corrientes, Argentina
Palabras clave:Chemical interactions; Chemical shifts; Coupling constants; PP-RPA qualitative model; Substituent effects
Año:2013
Volumen:3
Número:1
Página de inicio:9
Página de fin:39
DOI: http://dx.doi.org/10.1016/B978-0-444-59411-2.00002-2
Título revista:Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems
Título revista abreviado:Sci. Technol. At. Mol. Condens. Matter Biol. Syst.
ISSN:18754023
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18754023_v3_n1_p9_Contreras

Referencias:

  • Lipsitz, R.S., Tjandra, N., Residual dipolar couplings in NMR structure analysis (2004) Annu Rev Biophys Biomol Struct, 33, p. 387
  • Landau, L.D., Lifschitz, E.M., (1977) Quantum mechanics: non-relativistic theory, , Elsevier, Oxford
  • Cremer, D., Gräfenstein, J., Calculation and analysis of NMR spin-spin coupling constants (2007) Phys Chem Chem Phys, 9, p. 2791
  • Oddershede, J., Polarization propagator calculations (1978) Advances in quantum chemistry, pp. 275-352. , Academic Press, New York, P.O. Löwdin (Ed.)
  • Contreras, R.H., Giribet, C.G., Ruiz de Azúa, M.C., Ferraro, M.B., Electronic origin of high resolution NMR parameters (1992) Studies in physical and theoretical chemistry, 77 (B). , Elsevier Science Publishers B.V, Amsterdam, S. Fraga (Ed.) Computational chemistry: structure, interactions and reactivity
  • Sauer, S.P.A., Packer, M.J., The ab initio calculation of molecular properties other than the potential energy surface (2000) Computational molecular spectroscopy, pp. 221-252. , Wiley & Sons, London, [chapter 7], P.R. Bunker, P. Jensen (Eds.)
  • Helgaker, T., Jørgensen, P., Olsen, J., (2000) Molecular electronic structure theory, , Wiley & Sons, Chichester
  • Sauer, S.P.A., (2011) Molecular electromagnetism: a computational chemistry approach, , Oxford University Press, New York
  • Bryce, D.L., Wasylishen, R.E., Microwave spectroscopy and nuclear magnetic resonance spectroscopy-what is the connection? (2003) Acc Chem Res, 36, p. 327
  • Kreutz, C., Micura, R., Investigations on fluorine-labeled ribonucleic acids by 19F NMR spectroscopy (2008) Modified nucleosides: in biochemistry, biotechnology and medicine, , Wiley-VCH, New York: Weinheim, P. Herdewijn (Ed.)
  • Raynes, W.T., Theoretical and physical aspects of nuclear shielding (1974) Nuclear magnetic resonance, 3, p. 1. , The Chemical Society, London, (Specialist Periodical Reports), R.K. Harris (Ed.)
  • Harris, R.K., Becker, E.D., Cabral de Menezes, S.M., Granger, P., Hoffman, R.E., Zilm, K.W., Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008) (2008) Pure Appl Chem, 80, p. 59
  • London, F., Théorie Quantique des Courants Interatomiques dans les Combinaisons aromatic (1937) J Phys Radium, 8, p. 397
  • Epstein, S.T., Gauge invariance-a brief review (1980) Isr J Chem, 19, p. 154
  • Facelli, J.C., Grant, D.M., Bouman, T.D., Hansen, A.E., A comparison of the IGLO and LORG methods for the calculation of nuclear magnetic shieldings (1990) J Comput Chem, 11, p. 32
  • Bader, R.F.W., (1990) Atoms in molecules-a quantum theory, , Oxford University Press, Oxford
  • Schreckenbach, G., On the relation between a common gauge origin formulation and the GIAO formulation of the NMR shielding tensor (2002) Theor Chem Acc, 108, p. 246
  • Ligabue, A., Sauer, S.P.A., Lazzeretti, P., Gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. II. Density functional and coupled cluster theory (2007) J Chem Phys, 126, p. 154111
  • Pelloni, S., Lazzeretti, P., On the existence of a natural common gauge origin for the calculation of magnetic properties of atoms and molecules via gaugeless basis set (2012) J Chem Phys, 136, p. 164110
  • Reed, A.E., Curtiss, L.A., Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint (1988) Chem Rev, 88, p. 899
  • Weinhold, F., Ladis, E., (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective, , Cambridge University Press, Cambridge
  • Jameson, C.J., Fluorine (1987) Multinuclear NMR, Chapter 16, p. 437. , Plenum Press, New York, M. Mason (Ed.)
  • Della, E.W., Lochert, I.J., Peralta, J.E., Contreras, R.H., Theoretical and experimental study of 13C SCSs in 1-X-biciclo[1.1.1]pentanes (2000) Magn Reson Chem, 38, p. 395
  • Witanowski, M., Stefaniak, L., Webb, G.A., Nitrogen NMR spectroscopy (1986) Annu Rep NMR Spectrosc, 18. , 486 and 504
  • Gregorcic, A., Zupan, M., Fluorination of norbornadiene and 1,4-dihydro-methano-naphthalene with substituted (difluoroiodo)benzenes (1977) J Chem Soc Perkin I, p. 1446
  • Dolbier, W.R., (2009) Guide to fluorine NMR for organic chemists, , Wiley & Sons, Hoboken, NJ
  • Bovey, F.A., Jelinski, L., Mirau, P.A., (1988) NMR spectroscopy, p. 438. , Academic Press, New York
  • Kamieńska-Trela, K., One-bond 13C-13C spin-spin coupling constants (1995) Annu Rep NMR Spectrosc, 39, p. 131
  • De Kowalewski, D.G., Contreras, R.H., Díez, E., Esteban, A., NMR J(C,C) scalar coupling analysis of the effects of substituents on the keto-enol tautomeric equilibrium in 2-OH-n-X-pyridines. An experimental and DFT study (2004) Mol Phys, 102, p. 2607
  • Fiflt, M.J., Sojka, S.A., Wolfe, R.A., Hojnicki, D.S., A Chemical shift addtivity method for the prediction of fluorine-19 chemical shifts in fluoroaromatic compounds (1989) J. Org. Chem., 54, p. 3019
  • Experimental (2011), 115, pp. 7762-7768. , SOPPA(CCSD) and DFT Analysis of Substitutent Effects on NMR 1JCF Coupling Constants in Fluorobenzene Derivatives. Janaina Dantas Vilcachagua, Lucas C. Ducati, Roberto Rittner, Rubén H. Contreras and Cláudio F. Tormena, Journal of Physical Chemistry A; Ramsey, N.F., Electron coupled interactions between nuclear spins in molecules (1953) Phys Rev, 91, p. 303
  • Soncini, A., Lazzeretti, P., Nuclear spin-spin coupling density functions and the Fermi hole (2003) J Chem Phys, 119, p. 1343
  • Ducati, L.C., Contreras, R.H., Tormena, C.F., Unexpected geometrical effects on paramagnetic spin-orbit and spin-dipolar 2JFF couplings (2012) J Phys Chem A, 116, p. 4030
  • Gakh, Y.G., Gakh, A.A., Gronenborn, A.M., Fluorine as an NMR probe for structural studies of chemical and biological systems (2000) Magn Reson Chem, 38, p. 551
  • Contreras, R.H., Esteban, Á.L., Díez, E., Head, N.J., Della, E.W., Transmission mechanisms of NMR long-range J(13C,19F) scalar couplings in 1-F,4-X-cubanes. A DFT and experimental study (2006) Mol Phys, 104, p. 485
  • Scuseria, G.E., Facelli, J.C., Contreras, R.H., Engelmann, A.R., Transmission of spin-spin coupling constants through different paths in bicyclo(2.2.1)heptane: their calculation using inner projections of the polarization propagator (1983) Chem Phys Lett, 96, p. 560
  • Contreras, R.H., Scuseria, G.E., Theoretical additivity in multipath J13C1H coupling constants (1984) Org Magn Reson, 22, p. 411
  • Aucar, G.A., Ruiz de Azúa, M.C., Giribet, C.G., Contreras, R.H., Analysis of multipath transmission of spin-spin coupling constants in 1-X-bicycloalkanes. Part II: additivity of coupling pathways (1990) J Mol Struct (THEOCHEM), 205, p. 79
  • Contreras, R.H., Díez, E., Esteban, A.L., Della, E.W., Lochert, I.J., Electron delocalization interactions and NMR spin-spin coupling constants in saturated cage compounds (2006) J Arg Chem Soc, 94, p. 95
  • Contreras, R.H., Gotelli, G., Ducati, L.C., Barbosa, T.M., Tormena, C.F., Analysis of canonical molecular orbitals to identify Fermi contact coupling pathways. 1. The through-space transmission by overlap of 31P lone-pairs (2010) J Phys Chem A, 114, p. 1044
  • Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., (2001) NBO 5.0 Theoretical Chemistry Institute, , University of Wisconsin, Madison
  • Angeli, C., Bak, K.L., Bakken, V., Christiansen, O., Cimiraglia, R., Coriani, S., (2011), http://www.daltonprogram.org, DALTON, an electronic structure program, Release 2011; Peruchena, N.M., Aucar, G.A., Contreras, R.H., Large spin-dipolar long-range F-F coupling constants in conjugative compounds. Their study using propagators (1990) J Mol Struct (THEOCHEM), 210, p. 205
  • Provasi, P.F., Aucar, G.A., Sauer, S.P.A., Large long-range F-F indirect spin-spin coupling constants. Prediction of measurable F-F couplings over a few nanometers (2004) J Phys Chem A, 108, p. 5393
  • Lazzeretti, P., Malagoli, M., Zanasi, R., Della, E.W., Lochert, I.J., Giribet, C.G., Ab initio and experimental study of NMR coupling constants in bicyclo[1.1.1]pentane (1995) J Chem Soc Faraday Trans, 91, p. 4031
  • Contreras, R.H., Tormena, C.F., Ducati, L.C., Critical analysis of the through-space transmission of NMR JFH spin-spin coupling constants (2012) Int J Quantum Chem, 112, p. 3158
  • Baerends, E.J., Autschbach, J., Bd́erces, A., Bickelhaupt, F.M., Bo, C., Boerrigter, P.M., (2012), http://www.scm.com, ADF 2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, ADF computation chemistry package; Sagawara, T., Kawada, Y., Katoh, M., Iwamura, H., Oxygen-17 nuclear magnetic resonance. III (1979) Bull Chem Soc Jpn, 52, p. 3391
  • St Amour, T.E., Burger, M.I., Valentine, B., Fiat, D., Oxygen-17 NMR studies of substituent and hydrogen-bonding effects in substituted acetophenones and benzaldehydes (1981) J Am Chem Soc, 103, p. 1128
  • Gribble, G.W., Keavy, D.J., Olson, E.R., Rae, I.D., Staffa, A., Herr, T.E., Fluorine deshielding in the proximity of a methyl group. An experimental and theoretical study (1991) Magn Reson Chem, 29, p. 422

Citas:

---------- APA ----------
Contreras, R.H., Ferraro, M.B., Ruiz de Azúa, M.C. & Aucar, G.A. (2013) . Brief account of nonrelativistic theory of NMR parameters. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 3(1), 9-39.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00002-2
---------- CHICAGO ----------
Contreras, R.H., Ferraro, M.B., Ruiz de Azúa, M.C., Aucar, G.A. "Brief account of nonrelativistic theory of NMR parameters" . Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems 3, no. 1 (2013) : 9-39.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00002-2
---------- MLA ----------
Contreras, R.H., Ferraro, M.B., Ruiz de Azúa, M.C., Aucar, G.A. "Brief account of nonrelativistic theory of NMR parameters" . Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, vol. 3, no. 1, 2013, pp. 9-39.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00002-2
---------- VANCOUVER ----------
Contreras, R.H., Ferraro, M.B., Ruiz de Azúa, M.C., Aucar, G.A. Brief account of nonrelativistic theory of NMR parameters. Sci. Technol. At. Mol. Condens. Matter Biol. Syst. 2013;3(1):9-39.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00002-2