Artículo

Contreras, R.H.; Tormena, C.F.; Ducati, L.C.; Llorente, T. "Chemical shift trends in light atoms" (2013) Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems. 3(1):315-345
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this chapter, the qualitative model described in Chapter 2 is applied to show systematic rationalizations in terms of chemical interactions that define well-known trends for chemical shifts corresponding to 13C, 15N, 17O, and 19F isotopes. The theoretical fundamentals for this approach are given in Chapter 5. They could be a bit difficult to follow for readers who do not have a good training in physics and mathematics. However, this difficulty was intended to be overcome by resorting in Chapter 2 to describing this approach and providing "physically" several mathematical expressions and describing them in terms of familiar concepts employed frequently in different branches of chemistry and structural biology. The authors believe that once readers understand how easy this approach is and how it facilitates building pictorial representations of how several chemical interactions can be detected by means of high-resolution NMR spectroscopy, the initial problems will be overcome very soon. © 2013 Elsevier B.V.

Registro:

Documento: Artículo
Título:Chemical shift trends in light atoms
Autor:Contreras, R.H.; Tormena, C.F.; Ducati, L.C.; Llorente, T.
Filiación:Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA, Argentina
Chemistry Institute, University of Campinas, Campinas, Sao Paulo, Brazil
Palabras clave:Diamagnetic; Eigenvalues; Eigenvectors; Geometric effect; Mesomeric effect; Nuclear shielding tensor; Paramagnetic contributions; Steric effect
Año:2013
Volumen:3
Número:1
Página de inicio:315
Página de fin:345
DOI: http://dx.doi.org/10.1016/B978-0-444-59411-2.00010-1
Título revista:Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems
Título revista abreviado:Sci. Technol. At. Mol. Condens. Matter Biol. Syst.
ISSN:18754023
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18754023_v3_n1_p315_Contreras

Referencias:

  • Witanowski, M., Stefaniak, L., Webb, G.A., Nitrogen NMR Spectroscopy, Ann. Reps (1986) NMR Spectrosc, 18, pp. 487-495
  • Fifolt, M.J., Sojka, S.A., Wolfe, R.A., Hojnicki, D.S., A Chemical Shift Additivity Method for the Prediction of Fluorine-19 Chemical Shifts in Fluoroaromatic Compounds (1989) J. Org. Chem., 54, p. 3019
  • Reed, A.E., Curtiss, L.A., Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint (1988) Chem Rev, 88, p. 899
  • Weinhold, F., Natural bond orbital methods (1998) Encyclopedia of computational chemistry, pp. 3:1792. , Wiley, New York, P. Schleyer (Ed.)
  • Sanders, L.K., Oldfield, E., Theoretical investigation of 19F NMR chemical shielding tensors in fluorobenzenes (2001) J Phys Chem A, 105, p. 8098
  • Nudelman, N.S., Cerdeira, S.B., 1H and 13C NMR studies of substituted nitropyridines and nitrobenzenes (1986) Magn Reson Chem, 24, p. 507
  • Stefaniak, L., Roberts, J.D., Witanowski, M., Webb, G.A., 15NMR Spectroscopy of azines (1984) Org. Magn. Reson, 22, p. 201
  • Della, E.W., Lochert, I.J., Peralta, J.E., Contreras, R.H., A DFT/GIAO/NBO and experimental study of 13C SCSs in 1-X-biciclo[1.1.1]pentanes (2000) Magn Reson Chem, 38, p. 395
  • Jameson, C.J., Fluorine (1987) Multinuclear NMR, p. 437. , Plenum Press, New York, [chapter 16], J. Mason (Ed.)
  • Lochert, I.J., Synthesis and nuclear magnetic resonance study of bridgehead substituted bicycle[1.1.1]pentanes PhD thesis, presented to the Department of Chemistry, Faculty of Science and Engineering, Flinders University of South Australia, June 1996; Bradsshaw, T.K., Hine, P.T., Della, E.W., 19F chemical shifts of bridge-head fluorides (1981) Org Magn Reson, 16, p. 26
  • Mallory, F.B., Mallory, C.W., Butler, K.E., Lewis, M.B., Xia, A.Q., Luzik, E.D., Nuclear spin-spin coupling via nonbonded interactions. 8. The distance dependence of through-space fluorine-fluorine coupling (2000) J Am Chem Soc, 122, p. 4108
  • Gribble, G.W., Keavy, D.J., Olson, E.R., Rae, I.D., Staff, A., Herr, T.E., Fluorine deshielding in the proximity of a methyl group. An experimental and theoretical study (1991) Magn Reson Chem, 29, p. 422
  • (2011), http://daltonprogram.org, Dalton2011, A Molecular Electronic Structure Program, Release see; Vilcachagua, J.D., Ducati, L.C., Rittner, R., Contrera, R.H., Tormena, C.F., Experimental, SOPPA(CCSD) and DFT analysis of substituent effects on NMR 1JCF coupling constants in fluorobenzene derivatives (2011) J Phys Chem A, 115, p. 7762
  • Kreutz, C., Micura, R., Investigations on fluorine-labeled ribonucleic acids by 19F NMR spectroscopy (2008) Modified nucleosides: in biochemistry, biotechnology and medicine, , Wiley-VCH, Weinheim, P. Herdewijn (Ed.)
  • Contreras, R.H., Biekofsky, R.R., Esteban, A.L., Diez, E., Fabián, J.S., Carbonyl 17O chemical shift in the proximity of a methyl group in amides: an experimental and theoretical study (1996) Magn Reson Chem, 34, p. 447
  • Forsyth, D.A., Osterman, V.M., DeMember, D.J.R., NMR chemical shifts and NMR isotope shift evidence for the influence of non-bonded interactions on charge distribution in α,β-unsaturated methoxycarbenium ions (1985) J Am Chem Soc, 107, p. 818
  • Chazin, W.J., Colebrokk, L.D., A proton spin-lattice relaxation pathway analysis of conformational preferences of aryl and enol ethers in some cinchona and morphine alkaloids (1986) Can J Chem, 64, p. 2220
  • Biekofsky, R.R., Pomilio, A.B., Contreras, R.H., De Kowalewski, D.G., Facelli, J.C., Experimental and theoretical study of the methoxy group conformational effect on 13C chemical shifts in ortho-substituted anisoles (1989) Magn Reson Chem, 27, p. 158
  • Facelli, J.C., Orendt, A.M., Jiang, Y.J., Puigmire, R.J., Grant, D.M., Carbon-13 chemical shift tensors and molecular conformation in anisole (1996) J Phys Chem A, 100, p. 8268
  • De Kowalewski, D.G., Contreras, R.H., Engelman, A.R., Facelli, J.C., Durán, J.C., Transmission mechanisms of inter-proton long-range couplings in substituted anisoles (1981) Org Magn Reson, 17, p. 199
  • de Kowalewski, D.G., Kowalewski, V.J., Botek, E., Contreras, R.H., Facelli, J.C., Experimental and theoretical study of the ethoxy group conformational effect on 13C chemical shifts in ortho-substituted phenetols (1997) Magn Reson Chem, 35, p. 351
  • Joseph-Nathan, J., García Martínez, C., Morales Ríos, M.S., Dependence of 13C NMR methoxy substituent chemical shift values on π-bond orders of fused aromatic compounds (1990) Magn Reson Chem, 28, p. 311
  • Sherwood, M.H., Facelli, J.C., Alderman, D.W., Grant, D.M., Carbon-13 chemical shift tensors in polycyclic aromatic compounds. 2. Single-crystal study of naphthalene (1991) J Am Chem Soc, 113, p. 750
  • Seita, J., Sandström, J., Drakenberg, T., Carbon-13 NMR studies of substituted naphthalenes. I-complete assignments of the 13C chemical shifts with the aid of deuterated derivatives (1978) Org Magn Reson, 11, p. 239
  • Kitching, W., Bullpitt, M., Gartshore, D., Adcock, W., Khor, T.C., Doddrell, D., Carbon-13 nuclear magnetic resonance examination of naphthalene derivatives. Assignments and analysis of substituent chemical shifts (1977) J Org Chem, 42, p. 2411
  • Peralta, J.E., Contreras, R.H., Taurian, O.E., De Kowalewski, D.G., Kowalewski, V.J., Methyl β-substituent effect on NMR 17O chemical shifts in two-coordinated oxygen atoms: DFT GIAO and NBO, and experimental studies (1999) Magn Reson Chem, 37, p. 31. , and references cited therein
  • Delseth, C., Kintzinger, J.P., Résonance magnetique nucléaire de 13C et 17O d'éther aliphatiques. Effets gamma entre les atomes d'oxygène et de carbone (1978) Helv Chim Acta, 61, p. 1327
  • Kalabin, G.A., Kushnarev, D.F., Valeyev, R.B., Trofimov, B.A., Fedotov, M.A., 17O NMR investigation of p, π-interactions in α, β-unsaturated and aromatic ethers (1982) Org. Magn. Reson., 18, p. 1
  • Rae, I.D., Weigold, J.A., Contreras, R.H., Biekofsky, R.R., Analysis of long-range through space couplings via an intramolecular hydrogen bond (1993) Magn Reson Chem, 31, p. 836
  • Jameson, C.J., Fluorine (1987) Multinuclear NMR, p. 439. , Plenum Press, New York, [chapter 16], J. Mason (Ed.)

Citas:

---------- APA ----------
Contreras, R.H., Tormena, C.F., Ducati, L.C. & Llorente, T. (2013) . Chemical shift trends in light atoms. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 3(1), 315-345.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00010-1
---------- CHICAGO ----------
Contreras, R.H., Tormena, C.F., Ducati, L.C., Llorente, T. "Chemical shift trends in light atoms" . Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems 3, no. 1 (2013) : 315-345.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00010-1
---------- MLA ----------
Contreras, R.H., Tormena, C.F., Ducati, L.C., Llorente, T. "Chemical shift trends in light atoms" . Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, vol. 3, no. 1, 2013, pp. 315-345.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00010-1
---------- VANCOUVER ----------
Contreras, R.H., Tormena, C.F., Ducati, L.C., Llorente, T. Chemical shift trends in light atoms. Sci. Technol. At. Mol. Condens. Matter Biol. Syst. 2013;3(1):315-345.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00010-1