Artículo

Contreras, R.H.; Tormena, C.F.; Ducati, L.C. "Transmission Mechanisms of the Fermi-Contact Term of Spin-Spin Couplings" (2013) Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems. 3(1):245-284
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this chapter, several nJXY SSCC trends involving the X and Y light atoms are discussed with considerable detail for different values of n, the number of formal bonds separating both coupling nuclei. First, couplings contributed mainly by the FC interaction are considered. Insight into their transmission mechanisms is obtained using at least one of the following three approaches: (a) the qualitative model described in Chapter 2; (b) the FCCP-CMO approach, that is, studying Fermi contact coupling pathways in terms of canonical molecular orbitals; and (c) by using explicitly the known connection between the Fermi Hole and the FC term transmissions. Among others, the following interesting examples are mentioned, the "Perlin effect" for n=1 and X=C and Y=either C or H. The different signs known experimentally for analogous geminal couplings are discussed in terms of exchange interactions taking place in the region where both bonds overlap. For multicyclic compounds with n= 4, the FC transmission between bridgehead carbon atoms is rationalized in terms of series of concatenated sequences of hyperconjugative interactions involving those bridgehead atoms. Although the main emphasis is put on the FC term for different SSCCs, some discussions include also "noncontact" terms, where the PSO and DSO terms are described in some detail. In some cases, they are discussed in terms of the qualitative model described in Chapter 2, and examples where the "geometric effect" can be envisaged on physical grounds are described. This is only a brief description of some of the many interesting examples discussed within this chapter. © 2013 Elsevier B.V.

Registro:

Documento: Artículo
Título:Transmission Mechanisms of the Fermi-Contact Term of Spin-Spin Couplings
Autor:Contreras, R.H.; Tormena, C.F.; Ducati, L.C.
Filiación:Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA, Argentina
Chemistry Institute, University of Campinas, Campinas, Sao Paulo, Brazil
Palabras clave:FC transmission; Geometric effect; Multipath transmission; Perlin effect; PSO transmission; Qualitative model
Año:2013
Volumen:3
Número:1
Página de inicio:245
Página de fin:284
DOI: http://dx.doi.org/10.1016/B978-0-444-59411-2.00008-3
Título revista:Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems
Título revista abreviado:Sci. Technol. At. Mol. Condens. Matter Biol. Syst.
ISSN:18754023
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18754023_v3_n1_p245_Contreras

Referencias:

  • Contreras, R.H., Barone, V., Facelli, J.C., Peralta, J.E., Advances in theoretical and physical aspects of spin-spin coupling constants (2003) Ann Rep NMR Spectrosc, 51, p. 167
  • Contreras, R.H., Peralta, J.E., Angular dependence of spin-spin couplings (2000) Prog NMR Spectrosc, 37, p. 321
  • Karplus, M., Vicinal coupling in nuclear magnetic resonance (1963) J Am Chem Soc, 85, p. 2870
  • Reed, A.E., Curtiss, L.A., Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint (1988) Chem Rev, 88, p. 899
  • Weinhold, F., Ladis, E., (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective, , Cambridge University Press, Cambridge
  • Contreras, R.H., Gotelli, G., Ducati, L.C., Barbosa, T.M., Tormena, C.F., Analysis of canonical molecular orbitals to identify Fermi contact coupling pathways. 1. The through-space transmission by overlap of 31P lone-pairs (2010) J Phys Chem A, 114, p. 1044
  • Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., (2001) NBO 5.0, , Theoretical Chemistry Institute, University of Wisconsin, Madison
  • Soncini, A., Lazzeretti, P., Nuclear spin-spin coupling density functions and the Fermi hole (2003) J Chem Phys, 119, p. 1343
  • Bader, R.F.W., (1990) Atoms in molecules: a quantum theory, , Clarendor, Oxford
  • Giribet, C.G., Ruiz de Azúa, M.C., Contreras, R.H., Lobayan de Bonczok, R., Aucar, G., Gómez, S., (1993) J Mol Struct, 300, p. 467
  • Cremer, D., Gräfenstein, J., Calculation and analysis of NMR spin-spin coupling constants (2007) Phys Chem Chem Phys, 9, p. 2791
  • Malkina, O.L., Malkin, V.G., Visualization of nuclear spin-spin coupling pathways by real space functions (2003) Angew Chem Int Ed, 42, p. 4335
  • Dewar, M.J.S., Dougherty, R.C., (1975) The PMO theory of organic chemistry, , Plenum Press, New York
  • Contreras, R.H., Esteban, A.L., Díez, E., Della, E.W., Lochert, I.J., Dos Santos, F.P., Experimental and theoretical study of hyperconjugative interaction effects on NMR 1JCH scalar couplings (2006) J Phys Chem A, 110, p. 4266
  • Neto, A.C., Dos Santos, F.P., Contreras, R.H., Rittner, R., Tormena, C.F., Analysis of the electronic origin of the 1JCH spin-spin coupling trend in 1-X-cyclopropanes: experimental and DFT study (2008) J Phys Chem A, 112, p. 11956
  • Wolf, S., Pinto, M.B., Varma, V., Leung, R.Y.N., The Perlin effect: bond lengths, bond strengths, and the origins of stereoelectronic effects upon one-bond C-H coupling constants (1990) Can J Chem, 68, p. 1051
  • Hansen, P.E., Carbon-hydrogen spin-spin coupling constants (1981) Prog NMR Spectrosc, 14, p. 175
  • Gil, V.N.S., Von Phylipsborn, W., Effect of electron lone-pairs on nuclear spin-spin coupling constants (1989) Magn Reson Chem, 27, p. 409
  • Krivdin, L.B., Kalabin, G.A., Structural applications of one-bond carbon-carbon spin-spin coupling constants (1989) Prog NMR Spectrosc, 21, p. 293
  • De Kimpe, N., Verhe, R., De Buyck, L., Schamp, N., The effect of heteroatom at the α-position of aldimines on the 1JC-H coupling constant at the sp2-carbon (1984) Can J Chem, 62, p. 1812
  • Crépaux, D., Lehn, J.M., Dean, R.R., Nuclear spin-spin interactions. Part X. Absolute signs of geminal and vicinal nitrogen-proton coupling constants. Stereochemistry and medium effects on N, H couplings (1969) Mol Phys, 16, p. 225
  • Ashe, A.J., Sharp, R.R., Tolan, J.W., The nuclear magnetic resonance spectra of phosphabenzene, arsabenzene, and stibabenzene (1976) J Am Chem Soc, 98, p. 5451
  • Giribet, C.G., Vizioli, C.V., Ruiz de Azúa, M.C., Contreras, R.H., Dannenberg, J.J., Masunov, A., Proximity effects on nuclear spin-spin coupling constants. Part 2: the electric field effect on 1JCH couplings (1996) J Chem Soc Faraday Trans, 92, p. 3029
  • Desiraju, G.R., Steiner, T., (1999) The weak hydrogen bond in structural chemistry and biology, , Oxford University Press, New York
  • Masunov, A., Dannenberg, J.J., Contreras, R.H., C-H bond-shortening upon hydrogen bond formation: the influence of an electric field (2001) J Phys Chem A, 105, p. 4737
  • De Kowalewski, D.G., Kowalewski, V.J., Peralta, J.E., Eskuche, G., Contreras, R.H., Esteban, A.L., Intramolecular electric field effect on a 1JCH NMR spin-spin coupling constant. An experimental and theoretical study (1999) Magn Reson Chem, 37, p. 227
  • Bovey, F.A., Jelinski, L., Mirau, P.A., (1988) NMR spectroscopy, , Academic Press, New York
  • Wrackmeyer, B., Tok, O.L., Hyperconjugation in trialkylboranes shown by indirect nuclear spin-spin coupling constants. Experimental data and density functional theory calculation (2005) Z Naturforsch, 60 b, p. 259
  • Krivdin, L.B., Contreras, R.H., Recent advances in theoretical calculations of indirect spin-spin coupling constants (2007) Ann Rep NMR Spectrosc, 61, p. 133
  • Krivdin, L.B., Zinchenko, S.V., Shcherbakov, V.V., Elovskii, S.N., Kalabin, G.A., Effect of the unshared electron pair of the oxygen atom on the direct 13C-13C spin-spin coupling constants in dibenzofuran (1987) Z Org Khim, 23, p. 1420
  • Kalabin, G.A., Krivdin, L.B., Shcherbakov, V.V., Trofimov, B.A., Carbon-carbon coupling constants-a new guide in the stereochemistry of heteroatomic compounds (1986) J Mol Struct, 143, p. 569
  • Barfield, M., Chakrabarty, B., Longe-range proton spin-spin coupling (1969) Chem Rev, 69, p. 757
  • Wrackmeyer, B., Density functional theory (DFT) calculations of indirect nuclear spin-spin coupling constants 1J(31P,13C) in λ3-phosphaalkynes (2003) Z Naturforsch, 58 b, p. 1041
  • Contreras, R.H., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Lobayan de Bonczok, R., Viewpoint 8: polarization propagator analysis of spin-spin coupling constants (1993) J Mol Struct (THEOCHEM), 284, p. 249
  • Vilcachagua, J.D., Ducati, L.C., Rittner, R., Contreras, R.H., Tormena, C.F., Experimental, SOPPA(CCSD) and DFT analysis of substituent effects on NMR 1JCF coupling constants in fluorobenzene derivatives (2011) J Phys Chem A, 115, p. 7762
  • Ducati, L.C., Contreras, R.H., Tormena, C.F., Unexpected geometrical effects on paramagnetic spin-orbit and spin-dipolar 2JFF couplings (2012) J Phys Chem A, 116, p. 4930
  • Barone, V., Provasi, P.F., Peralta, J.E., Snyder, J.P., Sauer, S.P.A., Contreras, R.H., Substituent effects on scalar 2J(19F,19F) and 3J(19F,19F) NMR couplings: a comparison of SOPPA and DFT methods (2003) J Phys Chem A, 107, p. 4748
  • Barfield, M., Grant, D.M., The dependence of geminal proton spin-spin coupling constants on electron delocalization in molecules (1961) J Am Chem Soc, 83, p. 4726
  • Barfield, M., Grant, D.M., Valence-bond calculation of geminal spin-spin coupling constants in substituted methanes (1962) J Chem Phys, 36, p. 2054
  • Barfield, M., Grant, D.M., The effect of hyperconjugation on the geminal spin-spin coupling constants (1963) J Am Chem Soc, 85, p. 1901
  • Crépaux, D., Lehn, J.M., Dean, R.R., Nuclear spin-spin interactions. Part X. Absolute signs of geminal and vicinal nitrogen-proton coupling constants. Stereochemistry and medium effects on N,H couplings (1969) Mol Phys, 16, p. 225
  • Lichter, R.L., Dorman, D.E., Wasylishen, R., Geometrical dependences of carbon-nitrogen coupling constants. Oximes (1974) J Am Chem Soc, 96, p. 930
  • Contreras, R.H., Provasi, P.F., dos Santos, F.P., Tormena, C.F., Stereochemical dependence of NMR geminal spin-spin coupling constants (2009) Magn Reson Chem, 47, p. 113
  • Marshall, J.L., (1983) Carbon-carbon and carbon-proton NMR couplings: applications to organic stereochemistry and conformational analysis, , Verlag Chemie, Deerfield, FL
  • Martin, J.T., Norrby, P.O., Åkermark, B., Calculation of NMR observables from computed conformers as a tool of structure verification. Confirmation of the stereochemistry of trans-methyl 2,3-dimethyl-5-methoxy-2-cyclohexene-1-carboxylate (1993) J Org Chem, 58, p. 1400
  • Hansen, P.E., Nuclear magnetic resonance spectroscopy of C C, C O, C N and N N double bonds (1989) The chemistry of doublebonded functional groups, p. 129. , Wiley, New York, Chapt. 3, S. Patai (Ed.)
  • de Kowalewski, D.G., Kowalewski, V.J., Contreras, R.H., Diez, E., Esteban, A.L., Conformational effects on 13C NMR parameters in alkyl formates (1998) Magn Reson Chem, 36, p. 336
  • Pérez, C., Suardíaz, R., Ortiz, P.J., Crespo-Otero, R., Bonetto, G.M., Gavín, J.A., On the unusual 2JC2-Hf coupling dependence on syn/anti CHO conformation in 5-X-furan-2-carboxaldehydes (2008) Magn Reson Chem, 46, p. 846
  • Rae, I.D., Weigold, J.A., Contreras, R.H., Yamamoto, G., Signs of 19F-1H and 19F-13C spin-spin coupling constants mainly transmitted through-space (1992) Magn Reson Chem, 30, p. 1047
  • King, R.B., Lee, T.W., Metal complexes of fluorophosphines. 10. Mononuclear and binuclear chromium, molybdenum and tungsten carbonyl derivatives of (alkylamino) bis(difluoro)phosphines (1982) Inorg Chem, 21, p. 319
  • Johnson, T.R., Nixon, J.F., Phosphorus-fluorine chemistry. Part XVI. Phosphorus coupling constants, 2J(PMP') in ethylaminobisdifluorophosphine complexes of chromium, molybdenum and tungsten carbonyls (1969) J Chem Soc A, p. 2518
  • Ebsworth, E.A.V., Rankin, D.W.H., Wright, J.G., Preparation and spectroscopic properties of amines containing germyl and difluorophosphino groups (1977) J Chem Soc Dalton Trans, p. 2348
  • Ebsworth, E.A.V., Rankin, D.W.H., Wright, J.G., Preparation and chemical and spectroscopic properties of (disilylamino)difluorophosphine and bis(difluorophosphino)silylamine (1979) J Chem Soc Dalton Trans, p. 1065
  • Rusakov, Y., Krivdin, L., Nosova, V., Kisin, A., Lakhtin, V., Structural trends of 29Si-1H spin-spin coupling constants across double bonds (2012) Magn Reson Chem, 50, p. 665
  • Karplus, M., Vicinal proton coupling in nuclear magnetic resonance (1963) J Am Chem Soc, 85, p. 2870
  • Haasnoot, C.A.G., de Leew, F.A.A.M., Altona, C., The relationship between proton-proton NMR coupling constants and substituent electronegativities. I: an empirical generalization of the Karplus equation (1980) Tetrahedron, 36, p. 2783
  • Kurtkaya, S., Barone, V., Peralta, J.E., Contreras, R.H., Snyder, J.P., On the capriciousness of the FCCF Karplus curve (2002) J Am Chem Soc, 124, p. 9702
  • Provasi, P.F., Sauer, S.P.A., On the angular dependence of the vicinal fluorine-fluorine coupling constant in 1,2-difluoroethane (2006) J Chem Theory Comput, 2, p. 1019
  • Provasi, P.F., Aucar, G.A., Sauer, S.P.A., Large long-range F-F indirect spin-spin coupling constants. Prediction of measurable F-F couplings over a few nanometers (2004) J Phys Chem A, 108, p. 5393
  • Hajdok, S., Conrad, J., Leutbecher, H., Strobel, S., Schleid, T., Beifuss, U., The laccase-catalyzed domino reaction between catechols and heterocyclic 1,3-dicarbonyls and the unambiguous structure elucidation of the products by NMR spectroscopy and X-ray crystal structure analysis (2009) J Org Chem, 74, p. 7230
  • Barfield, M., Smith, W.B., Internal H-C-C angle dependence of vicinal 1H-1H coupling constants (1992) J Am Chem Soc, 114, p. 1574
  • Smith, W.B., Barfield, M., Predictions of 3JHH near 180o-reparameterization of the sp3-sp3 equation (1993) Magn Reson Chem, 31, p. 696
  • Favaro, D.C., Ducati, L.C., dos Santos, F.P., Contreras, R.H., Tormena, C.F., Stereochemical dependence of 3JCH coupling constants in 2-substituted 4-t-butyl-cyclohexanone and their alcohol derivatives (2011) J Phys Chem A, 115, p. 14539
  • Dingley, A.J., Masse, J.E., Peterson, R.D., Barfield, M., Feigon, J., Grzesiek, S., Internucleotide scalar couplings across hydrogen bonds in Watson-Crick and Hoogsteen base pairs of a DNA triplex (1999) J Am Chem Soc, 121, p. 6019
  • Pervushin, K., Ono, A., Fernandez, C., Szyperski, T., Kainosho, M., Wüthrich, K., NMR scalar couplings across Watson-crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy (1998) Proc Natl Acad Sci USA, 95, p. 14147
  • Malkina, O.L., Malkin, V.G., Visualization of nuclear spin-spin coupling pathways by real-space functions (2003) Angew Chem Int Ed, 42, p. 4335
  • Soncini, A., Lazzeretti, P., Critique of the multipath model for 1J(C, C) nuclear spin-spin coupling via electron current induced by 13C nuclear magnetic dipoles (2006) Chemphyschem, 7, p. 679
  • Marek, R., Křístková, A., Maliňáková, K., Toušek, J., Marek, J., Hocek, M., Interpretation of indirect nuclear spin-spin couplings in isomers of adenine: novel approach to analyze coupling electron deformation density using localized molecular orbitals (2010) J Phys Chem A, 114, p. 6689
  • Malkina, O.L., Křístková, A., Malkin, E., Komorovský, S., Malkin, V.G., Illumination of the effect of the overlap of lone-pairs on indirect nuclear spin-spin coupling constants (2011) Phys Chem Chem Phys, 13, p. 16015
  • Attimonelli, M., Sciacovelli, O., INDOR study of 1H-1H inter-ring couplings in naphthalene derivatives (1977) Org Magn Reson, 9, p. 601
  • Olah, G.A., Shih, J.G., Krishnamurthy, V.V., Singh, B.P., Preparation and carbon-13 NMR spectroscopic study of fluoroadamantanes and diamantanes: study of carbon-13 and fluorine-19 NMR coupling constants (1984) J Am Chem Soc, 106, p. 4492
  • Kennedy, J.D., Silicon, M.W., Germanium, tin and lead (1987) Multinuclear NMR, , Plenum Press, New York, J. Mason (Ed.)
  • Del Bene, J.E., Alkorta, I., Elguero, J., Computed EOM-CCSD 19F-19F spin-spin coupling constants in small organic molecules (2003) Z Phys Chem, 217, p. 1565
  • Barone, V., Provasi, P.F., Peralta, J.E., Snyder, J.P., Sauer, S.P.A., Contreras, R.H., Substituent effects on scalar 2J(19F,19F) and 3J(19F,19F) NMR couplings: a comparison of SOPPA and DFT methods (2003) J Phys Chem A, 107, p. 4748
  • Sakamoto, Y., Ono, M., Proton-carbon coupling constants in quinolines (2012) J Mol Struct, 1013, p. 61

Citas:

---------- APA ----------
Contreras, R.H., Tormena, C.F. & Ducati, L.C. (2013) . Transmission Mechanisms of the Fermi-Contact Term of Spin-Spin Couplings. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 3(1), 245-284.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00008-3
---------- CHICAGO ----------
Contreras, R.H., Tormena, C.F., Ducati, L.C. "Transmission Mechanisms of the Fermi-Contact Term of Spin-Spin Couplings" . Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems 3, no. 1 (2013) : 245-284.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00008-3
---------- MLA ----------
Contreras, R.H., Tormena, C.F., Ducati, L.C. "Transmission Mechanisms of the Fermi-Contact Term of Spin-Spin Couplings" . Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, vol. 3, no. 1, 2013, pp. 245-284.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00008-3
---------- VANCOUVER ----------
Contreras, R.H., Tormena, C.F., Ducati, L.C. Transmission Mechanisms of the Fermi-Contact Term of Spin-Spin Couplings. Sci. Technol. At. Mol. Condens. Matter Biol. Syst. 2013;3(1):245-284.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00008-3