Abstract:
Polarization propagators (PP) are powerful theoretical tools that allow carrying out a deep analysis of the electronic mechanisms underlying any molecular response property. The inner projections of the PP and contributions from localized orbitals within the PP approaches described in Section 2 were developed to fully take advantage of this power of analysis for the study of NMR spectroscopic parameters. They are based on the use of localized molecular orbitals (LMOs) related to chemically intuitive concepts to decompose the mathematical expression of these parameters into coupling pathways or shielding pathways. Each of them may be furthermore decomposed into two new objects: (i) perturbators, which give information on the efficiency of a given magnetic perturbation to produce local excitations and (ii) the principal propagator matrix elements which provide deep understanding on the way perturbations are transmitted within the electronic framework of the molecule under study. Applications are presented in Section 3, both within semiempirical and ab initio approaches: the Karplus rule, a general analysis of the signs of J couplings, σ-π decomposition, hyperconjugative effects in transmission of J couplings, general features of 1J couplings, and intermolecular couplings in hydrogen-bonded systems. All applications were especially selected to cover examples in which qualitative physical insight can be gained. © 2013 Elsevier B.V.
Registro:
Documento: |
Artículo
|
Título: | The Polarization propagator approach as a tool to study electronic molecular structures from high-resolution NMR parameters |
Autor: | Aucar, G.A.; Ruiz de Azúa, M.C.; Giribet, C.G. |
Filiación: | Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina and IMIT Institute, CONICET-UNNE, Corrientes, Argentina Dpto. de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina
|
Palabras clave: | CLOPPA method; Karplus rule; Localized orbitals and NMR parameters; Polarization propagators in NMR; Transmission mechanisms of NMR J couplings |
Año: | 2013
|
Volumen: | 3
|
Número: | 1
|
Página de inicio: | 119
|
Página de fin: | 159
|
DOI: |
http://dx.doi.org/10.1016/B978-0-444-59411-2.00005-8 |
Título revista: | Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems
|
Título revista abreviado: | Sci. Technol. At. Mol. Condens. Matter Biol. Syst.
|
ISSN: | 18754023
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18754023_v3_n1_p119_Aucar |
Referencias:
- Linderberg, J., Öhrn, Y., (1973) Propagators in quantum chemistry, , Academic Press, New York
- Aucar, G.A., Romero, R.H., Maldonado, A.F., Polarization propagators: a powerful theoretical tool for a deeper understanding of NMR spectroscopic parameters (2010) Int Rev Phys Chem, 29, p. 1
- Oddershede, J., Polarization propagator calculations (1978) Adv Quantum Chem, 11, p. 257
- Oddershede, J., Introductory polarization propagator theory (1983) Methods in computational molecular physics, p. 249. , Reidel Publishing Company, Boston, G.H.F. Diercksen, S. Wilson (Eds.)
- Oddershede, J., Jørgensen, P., Yeager, D.L., Polarization propagator methods in atomic and molecular calculations (1984) Comput Phys Rep, 2, p. 33
- Nakatsuji, H., What is the best expression of the second-order sum-over-state perturbation energy based on the Hartree-Fock wavefunction? (1974) J Chem Phys, 61, p. 3728
- Enevoldsen, T., Oddershede, J., Sauer, S.P.A., Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD) (1998) Theor Chem Acc., 100, p. 275
- Engelmann, A.R., Contreras, R.H., Transmission mechanisms of spin-spin coupling constants within the CHF approximation: their study using inner projections of the polarization propagator (1983) Int J Quantum Chem, 23, p. 1033
- Diz, A.C., Giribet, C.G., Ruiz de Azúa, M.C., Contreras, R.H., The use of localized molecular orbitals and the polarization propagator to identify transmission mechanisms in nuclear spin-spin couplings (1990) Int J Quantum Chem, 37, p. 663
- Ruiz de Azúa, M.C., Giribet, C.G., Vizioli, C.V., Contreras, R.H., Ab initio IPPP-CLOPPA approach to perform bond contribution analysis of NMR coupling constants: 1J(NH) in NH3 as a function of pyramidality (1998) J Mol Struct (THEOCHEM), 433, p. 141
- Sauer, S.P.A., Provasi, P.F., The anomalous deuterium isotope effect in the NMR spectrum of methane: an analysis in localized molecular orbitals (2008) Chem Phys Chem, 9, p. 1259
- Zarycz, N., Aucar, G.A., Analysis of electron correlation effects and contributions of NMR J-couplings from occupied localized molecular orbitals (2012) J Phys Chem A, 116, p. 1272
- Weinhold, F., Landis, C.R., (2012) Discovering chemistry with natural bond orbitals, , John Wiley & Sons, Hoboken, NJ, USA
- Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P., Development and use of quantum mechanical molecular models. 76.AM1: a new general purpose quantum mechanical molecular model (1985) J Am Chem Soc, 107, p. 3902
- Pople, J.A., Beveridge, D.L., (1970) Approximate molecular orbital theory, , McGraw-Hill, New York
- Gómez, C.A., Provasi, P.F., Aucar, G.A., Propagator matrices as power's series. I: its zeroth-order and the people-santry model (2002) J Mol Struct (THEOCHEM), 584, p. 159
- Gómez, C.A., Provasi, P.F., Aucar, G.A., Propagator matrices as power's series. II: its relationship with HF's stability problem and alternative solutions (2003) J Mol Struct (THEOCHEM), 620, p. 149
- Karplus, M., Contact electron-spin coupling of nuclear magnetic moments (1959) J Chem Phys, 30, p. 11
- Vicinal proton coupling in nuclear magnetic resonance (1963) J Am Chem Soc, 85, p. 2870
- Provasi, P.F., Gómez, C.A., Aucar, G.A., Hyperconjugation: the electronic mechanism that may underlie the Karplus curve of vicinal NMR indirect spin couplings (2004) J Phys Chem A, 108, p. 6231
- Contreras, R.H., Facelli, J.C., Advances in theoretical and physical aspects of spin-spin coupling constants (1993) Annu Rep NMR Spectrosc, 27, p. 255
- Jameson, C.J., The parameters of NMR spectroscopy (1987) Multinuclear NMR, , Plenum Press, New York, J. Mason (Ed.)
- Harris, R.K., (1983) Nuclear magnetic resonance spectroscopy, , Pitman Publishing Inc., Great Bretain
- González, J.A., Aucar, G.A., Ruiz de Azúa, M.C., Contreras, R.H., Cloppa RPA-AM1 analysis of the anisotropy of NMR 1J(XY) coupling tensors in Me3XY compounds (X =13C,29Si,119Sn,207Pb;Y =19 F,35 Cl) (1997) Int J Quantum Chem, 61, p. 823
- Giribet, C.G., unpublished results; Giribet, C.G., Ruiz de Azúa, M.C., CLOPPA-IPPP analysis of electronic mechanisms of intermolecular 1hJ(A, H) and 2hJ(A, D) spin-spin coupling constants in systems with D - H. A hydrogen bonds (2005) Phys Chem A, 109, p. 11980
- Bernheim, R.A., Batiz-Hernandez, H., Indirect nuclear spin-spin coupling and isotope shifts in the nuclear magnetic resonance of NH3, NH2D and NHD2 (1964) J Chem Phys, 40, p. 3446
- Dingley, A.J., Grzesiek, S., Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2J(NN) couplings (1998) J Am Chem Soc, 120, p. 8293
- Dingley, A.J., Masse, J.E., Peterson, R.D., Barfield, M., Feigon, J., Grzesiek, S., Internucleotide scalar couplings across hydrogen bonds in Watson-Crick and Hoogsteen base pairs of a DNA triplex (1999) J Am Chem Soc, 121, p. 6019
- Benedict, H., Shenderovich, I.G., Malkina, O.L., Malkin, V.G., Denisov, G.S., Golubev, N.S., Limbach, H.H., Nuclear scalar spin-spin couplings and geometries of hydrogen bonds (2000) J Am Chem Soc, 122, p. 1979
- Wilkens, S.J., Westler, W.M., Weinhold, F., Markley, J.L., Trans-hydrogen-bond h2J(NN) and h1J(NH) couplings in the DNA a-T base pair: natural bond orbital analysis (2002) J Am Chem Soc, 124, p. 1190
- Tuttle, T., Kraka, E., Wu, A., Cremer, D., Analysis of the NMR spin-spin coupling mechanism across a H-bond: nature of the H-bond in proteins (2004) J Phys Chem B, 108, p. 1115
- Lazzeretti, P., Zanasi, R., Anisotropy of the nuclear spin-spin coupling tensor in water, ammonia, and methane molecules (1982) J Chem Phys, 77, p. 2448
- (2001), http://daltonprogram.org/, DALTON, a molecular electronic structure program, Release Dalton 2001; See
Citas:
---------- APA ----------
Aucar, G.A., Ruiz de Azúa, M.C. & Giribet, C.G.
(2013)
. The Polarization propagator approach as a tool to study electronic molecular structures from high-resolution NMR parameters. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 3(1), 119-159.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00005-8---------- CHICAGO ----------
Aucar, G.A., Ruiz de Azúa, M.C., Giribet, C.G.
"The Polarization propagator approach as a tool to study electronic molecular structures from high-resolution NMR parameters"
. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems 3, no. 1
(2013) : 119-159.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00005-8---------- MLA ----------
Aucar, G.A., Ruiz de Azúa, M.C., Giribet, C.G.
"The Polarization propagator approach as a tool to study electronic molecular structures from high-resolution NMR parameters"
. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, vol. 3, no. 1, 2013, pp. 119-159.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00005-8---------- VANCOUVER ----------
Aucar, G.A., Ruiz de Azúa, M.C., Giribet, C.G. The Polarization propagator approach as a tool to study electronic molecular structures from high-resolution NMR parameters. Sci. Technol. At. Mol. Condens. Matter Biol. Syst. 2013;3(1):119-159.
http://dx.doi.org/10.1016/B978-0-444-59411-2.00005-8