Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This work constitutes a short survey of the subject of elliptic partial differential equations with nonlinear boundary conditions. We will focus especially on the relevance of the Sobolev trace theorem in the analysis of this kind of problems. We will also describe some of the techniques employed when dealing with such a kind of problems. © 2005 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Chapter 5 Elliptic problems with nonlinear boundary conditions and the sobolev trace theorem
Autor:Rossi, J.D.
Filiación:Departamento de Matemática, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Eliptic problems; Nonlincar boundary conditions; Sobolev inequalities
Año:2005
Volumen:2
Página de inicio:311
Página de fin:406
DOI: http://dx.doi.org/10.1016/S1874-5733(05)80013-0
Título revista:Handbook of Differential Equations: Stationary Partial Differential Equations
Título revista abreviado:Handb. Differ. Equ. : Station. Partial Differ. Equ.
ISSN:18745733
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18745733_v2_n_p311_Rossi

Referencias:

  • Abreu, E., Carriao, P., Miyagaki, O., On elliptic problem with double critical exponents Preprint; Adams, R.A., Sobolev Spaces (1975) Pure and Applied Mathematics, , Academic Press, Berlin/New York
  • Yadava, A., Yadava, S.L., Positive solution for Neumann problem with critical non linearity on boundary (1991) Comm. Partial Differential Equations, 16 (11), pp. 1733-1760
  • Amann, H., Parabolic evolution equations and nonlinear boundary conditions (1988) J. Differential Equations, 72, pp. 201-269
  • Ambrosetti, A., Li, Y.Y., Malchiodi, A., On the Yamabe problem and the scalar curvature problems under boundary conditions (2002) Math. Ann., 322 (4), pp. 667-699
  • Ambrosetti, A., Rabinowitz, P.H., Dual variational methods in critical point theory and applications (1973) J. Funct. Anal., 14 (4), pp. 349-381
  • Anane, A., Simplicité et isolation de la premiere valeur propre du p-laplacien avec poids (1987) C. R. Acad. Sci. Paris Sér, 1305, pp. 725-728
  • Andreu, F., Ballester, C., Caselles, V., Mazón, J.M., Minimizing total variational flow (2001) Differential Integral Equations, 14, pp. 321-360
  • Andreu, F., Igbida, N., Mazon, J.M., Toledo, J., Some existence results for quasi-linear elliptic equations under nonlinear boundary conditions Preprint; Andreu, F., Mazon, J.M., Moll, S., The total variation flow with nonlinear boundary conditions Preprint; Andreu, F., Mazon, J.M., Rossi, J.D., The best constant for the Sobolev trace embedding from Wl'1 (Ω) into L1(∂Ω) (2004) Nonlinear Anal., 59 (7), pp. 1125-1145
  • Andreu, F., Mazon, J.M., Segura de Leon, S., Toledo, J., Quasi-linear elliptic and parabolic equations in L1 with nonlinear boundary conditions (1997) Adv. Math. Sci. Appl, 7 (1), pp. 183-213
  • Arcoya, D., Gamez, J.L., Bifurcation theory and related problems: Antimaximum principle and reso- nance (2001) Comm. Partial Differential Equations, 26 (9-10), pp. 1879-1911
  • Arcoya, D., Rossi, J.D., Antimaximum principle for quasilinear problems (2004) Adv. Differential Equations, 9 (9-10), pp. 1185-1200
  • Aubin, T., Équations différentielles non linéaires et le probléme de Yamabe concernant la courbure scalaire (1976) J. Math. Pures Appl., 55, pp. 269-296
  • Barles, G., Fully nonlinear Neumann type conditions for second-order elliptic and parabolic equations (1993) J. Differential Equations, 106, pp. 90-106
  • Bartsch, T., de Figueiredo, D.G., Infinitely many solutions of nonlinear elliptic systems (1999) Progr. Nonlinear Differential Equations Appl., 35, pp. 51-67. , Birkhäuser, New York- London
  • Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality (1993) Ann. of Math., 138, pp. 213-242
  • Benilan, Ph., Crandall, M., Sacks, P., Some L 1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions (1988) Appl. Math. Optim, 17 (3), pp. 203-224
  • Biezuner, R.J., Best constants in Sobolev trace inequalities (2003) Nonlinear Anal., 54, pp. 575-589
  • Bourgain, J., Brezis, H., Mironescu, P., Another look at Sobolev spaces (2001) Optimal Control and Partial Differential Equations, pp. 439-455. , IOS Press, Basel
  • Brezis, H., Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents (1983) Comm. Pure Appl. Math, XXXVI, pp. 437-477
  • Brock, F., An isoperimetric inequality for eigenvalues of the Steckloff problem (2001) Z. Angew. Math. Mech, 81 (1), pp. 69-71
  • Cabre, X., Sola-Morales, J., Layer solutions in a halfspace for boundary reactions Commun. Pure Appl. Math, , to appear
  • Calderon, A.P., On a inverse boundary value problem (1980) Seminar in Nonlinear Analysis and Its Applications to Continuum Physics, Soc. Brasilera de Matematica, pp. 65-73. , Rio de Janeiro
  • Chabrowski, J., On the nonlinear Neumann problem involving the critical Sobolev exponent on the boundary (2004) J. Math. Anal. Appl., 290, pp. 605-619
  • Chabrowski, J., Yang, J., Existence theorems for elliptic equations involving supercritical Sobolev exponent (1997) Adv. Differential Equations, 2 (2), pp. 231-256
  • Cherkaev, A., Cherkaeva, E., Optimal design for uncertain loading condition (1999) Homogenization, Ser. Adv. Math. Appl. Sci., 50, pp. 193-213. , World Sci. Publishing, Amsterdam
  • Cherrier, P., Problèmes de Neumann non linéaires sur les variétés Riemanniennes (1984) J. Funct. Anal, 57, pp. 154-206
  • Chipot, M., Chlebík, M., Fila, M., Shafrir, I., Existence of positive solutions of a semilinear elliptic equation in RN+with a nonlinear boundary condition (1998) J. Math. Anal. Appl, 223, pp. 429-471
  • Chipot, M., Fila, M., Quittner, P., Stationary solutions, blow-up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions (1991) Acta Math. Univ. Comenian, LX (1), pp. 35-103
  • Chipot, M., Quittner, P., Equilibria, connecting orbits and a priori bounds for semilinear parabolic equations with nonlinear boundary conditions (2004) J. Dynam. Differential Equations, 16, pp. 91-138
  • Chipot, M., Shafrir, I., Fila, M., On the solutions to some elliptic equations with nonlinear boundary conditions (1996) Adv. Differential Equations, 1 (1), pp. 91-110
  • Chlebík, M., Fila, M., Some recent results on blow-up on the boundary for the heat equation, Evolution Equations: Existence, Regularity and Singularities, Warsaw, 1998 (2000) Polish Acad. Sci., pp. 61-71. , Banach Center Publ., River Edge, NJ
  • Chlebík, M., Fila, M., Reichel, W., Positive solutions of linear elliptic equations with critical growth in the Neumann boundary condition (2003) NoDEA Nonlinear Differential Equations Appl., 10 (3), pp. 329-346
  • Cîrstea, F.-C.Ş., R>adulescu, V., Existence and non-existence results for a quasilinear problem with nonlinear boundary conditions (2000) J. Math. Anal. Appl., 244, pp. 169-183
  • Cîrstea, F.-C.Şt., Rǎdulescu, V., On a double bifurcation quasilinear problem arising in the study of anisotropic continuous media (2001) Proc. Edinburgh Math. Soc., 44, pp. 527-548
  • Clement, P., Peletier, L.A., An antimaximum principle for second order elliptic operators (1979) J. Differential Equations, 34, pp. 218-229
  • Consul, N., Sola-Morales, J., Stability of local minima and stable nonconstant equilibria (1999) J. Differential Equations, 157, pp. 61-81
  • Cortázar, C., Elgueta, M., Felmer, P., Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation (1996) Comm. Partial Differential Equations, 21 (3-4), pp. 507-520
  • Davila, J., Montenegro, M., Nonlinear problems with solutions exhibiting a free boundary on the boundary Preprint; Davila, J., Rossi, J.D., Self-similar solutions of the porous medium equation in a half-space with a nonlinear boundary condition. Existence and symmetry (2004) J. Math. Anal. Appl., 296, pp. 634-649
  • de Figueiredo, D.G., Positive solutions of semilinear elliptic equations (1982) Lecture Notes in Math., pp. 34-87. , Springer-Verlag, Warsaw
  • de Figueiredo, D.G., Semilinear elliptic systems: A survey of superlinear problems (1996) Resenhas IME-USP, pp. 373-391
  • de, D.G., Figueiredo and P.L. Felmer, On superquadratic elliptic systems (1994) Trans. Amer. Math. Soc., 343, pp. 99-116
  • del Pino, M., Flores, C., Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains (2001) Comm. Partial Differential Equations, 26 (11-12), pp. 2189-2210
  • Demengel, F., On some nonlinear equation involving the 1 -Laplacian and trace map inequalities (2002) Nonlin- ear Anal., 48, pp. 1151-1163
  • Denzler, J., Windows of given area with minimal heat diffusion (1999) Trans. Amer. Math. Soc., 351, pp. 569-580
  • Drábek, P., Robinson, S.B., Resonance problem for the p-Laplacian (1999) J. Funct. Anal., 169, pp. 189-200
  • Druet, O., Hebey, E., The AB Program in Geometric Analysis: Sharp Sobolev Inequalities and Related Problems (2002) Amer. Math. Soc, , Providence, RI. Mem. Amer. Math. Soc
  • Ebmeyer, C., Nonlinear elliptic problems under mixed boundary conditions in nonsmooth domains (2000) SIAM J. Math. Anal., 32, pp. 103-118. , 1
  • El Hamidi, A., Multiple solutions with sign changing energy to a nonlinear elliptic equation (2004) Commun. Pure Appl. Anal., 3 (2), pp. 253-265
  • Escobar, J.F., Sharp constant in a Sobolev trace inequality (1988) Indiana Univ. Math. J., 37, pp. 687-698
  • Escobar, J.F., Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an eigenvalue estimate (1990) Comm. Pure Appl. Math., 43, pp. 857-883
  • Escobar, J.F., Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature (1992) Ann. of Math., 136 (2), pp. 1-50
  • Escobar, J.F., Conformal metrics with prescribed mean curvature on the boundary (1996) Calc. Var. Partial Dif- ferential Equations, 4 (6), pp. 559-592
  • Escobar, J.F., The geometry of the first non-zero Steklov eigenvalue (1997) J. Funct. Anal., 150, pp. 544-556
  • Escobar, J.F., An isoperimetric inequality and the first Steklov eigenvalue (1999) J. Funct. Anal., 165, pp. 101-116
  • Escobar, J.F., A comparison theorem for the first non-zero Steklov eigenvalue (2000) J. Funct. Anal., 178, pp. 143-155
  • Felli, V., Ahmedou, M.O., On a geometric equation with critical nonlinearity on the boundary Preprint; Felli, V., Ahmedou, M.O., Compactness results in conformal deformations of Riemannian manifolds with boundaries (2003) Math. Z., 244 (1), pp. 175-210
  • Felmer, P., Periodic solutions of 'superquadratic' Hamiltonian systems (1993) J. Differential Equations, 102, pp. 188-207
  • Felmer, P., Wang, Z.-Q., Multiplicity for symmetric indefinite functional: Application to Hamiltonian and elliptic systems, Topol. (1998) Methods Nonlinear Anal., 12 (2), pp. 207-226
  • Fernández Bonder, J., Ferreira, R., Rossi, J.D., Uniform bounds for the best Sobolev trace constant (2003) Adv. Nonlinear Stud., 3 (2), pp. 181-192
  • Fernández Bonder, J., Lami Dozo, E., Rossi, J.D., Symmetry properties for the extremals of the Sobolev trace embedding (2004) Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (6), pp. 795-805
  • Fernández Bonder, J., Martinez, S., Rossi, J.D., The behaviour of the best Sobolev trace constant and extremals in thin domains (2004) J. Differential Equations, 198 (1), pp. 129-148
  • Fernández Bonder, J., Martinez, S., Rossi, J.D., Existence results for gradient elliptic systems with non- linear boundary conditions Preprint; Fernández Bonder, J., Pinasco, J.P., Rossi, J.D., Existence results for a Hamiltonian elliptic system with nonlinear boundary conditions (1999) Electron. J. Differential Equations, 40, pp. 1-15
  • Fernández Bonder, J., Pinasco, J.P., Rossi, J.D., Infinitely many solutions for an elliptic system with nonlinear boundary conditions (2001) Electron. J. Differ. Equ. Conf, 6, pp. 141-154
  • Fernández Bonder, J., Rossi, J.D., Existence for an elliptic system with nonlinear boundary conditions via fixed point methods (2001) Adv. Differential Equations, 6 (1), pp. 1-20
  • Fernández Bonder, J., Rossi, J.D., Existence results for the p-Laplacian with nonlinear boundary conditions (2001) J. Math. Anal. Appl., 263, pp. 195-223
  • Fernández Bonder, J., Rossi, J.D., A fourth order elliptic equation with nonlinear boundary conditions (2002) Nonlinear Anal., 49 (8), pp. 1037-1047
  • Fernández Bonder, J., Rossi, J.D., A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding (2002) Publ. Mat., 46, pp. 221-235
  • Fernández Bonder, J., Rossi, J.D., Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains (2002) Commun. Pure Appl. Anal., 1 (3), pp. 359-378
  • Fernández Bonder, J., Rossi, J.D., On the existence of extremals for the Sobolev trace embedding theo- rem with critical exponent (2005) Bull. London Math. Soc, 37, pp. 119-125
  • Fernández Bonder, J., Rossi, J.D., Wolanski, N., Behavior of the best Sobolev trace constant and ex- tremals in domains with holes Preprint; Fila, M., Filo, J., Blow-up on the boundary: A survey (1996) Polish Acad. Sci., pp. 67-78. , Singularities and Differential Equations Warsaw 1993, Banach Center Publ., Berlin
  • Galaktionov, V., Vázquez, J.L., The problem of blow-up in nonlinear parabolic equations (2002) Discrete Contin. Dyn. Syst. Ser., A 8, pp. 399-433
  • García-Azorero, J., Peral, I., Existence and non-uniqueness for the p-Laplacian: Nonlinear eigenvalues (1987) Comm. Partial Differential Equations, 12, pp. 1389-1430
  • García-Azorero, J., Peral, I., Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term (1991) Trans. Amer. Math. Soc., 323 (2), pp. 877-895
  • García-Azorero, J., Peral, I., Rossi, J.D., A convex-concave problem with a nonlinear boundary condition (2004) J. Differential Equations, 198 (1), pp. 91-128
  • Gidas, B., Ni, W.-M., Nirenberg, L., Symmetry related properties via maximum principle (1979) Comm. Math. Phys., 68, pp. 209-243
  • Gidas, B., Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equations (1981) Comm. Partial Differential Equations, 6, pp. 883-901
  • Gilbarg, D., Trudinger, N.S., (1983) Elliptic Partial Differential Equations of Second Order, , Springer-Verlag, Warsaw
  • Han, Z.C., Li, Y.Y., The Yamabe problem on manifolds with boundaries: Existence and compactness results (1999) Duke Math. J, 99, pp. 489-542
  • Han, Z.C., Li, Y.Y., The existence of conformal metrics with constant scalar curvature and constant mean curvature (2000) Comm. Anal. Geom., 8 (4), pp. 809-869
  • Hu, B., Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition (1994) Differential Integral Equations, 7 (2), pp. 301-313
  • Hu, B., Yin, H.M., The profile near blow-up time for the solution of the heat equation with a nonlinear boundary condition (1995) Trans. Amer. Math. Soc., 346 (1), pp. 117-135
  • Ishii, H., Lions, P.L., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations (1990) J. Differential Equations, 83, pp. 26-78
  • Kawohl, B., Rearrangements and Convexity of Level Sets in PDE (1985) Lecture Notes in Math., , Springer-Verlag, New York
  • Krasnoselski, M.A., (1964) Topological Methods in the Theory of Nonlinear Integral Equations, , Macmillan, Berlin
  • Lami Dozo, E., Torne, O., Symmetry and symmetry breaking for minimizers in the trace inequality Commun. Contemp. Math, , to appear
  • Li, Y., Zhu, M., Uniqueness theorems through the method of moving spheres (1995) Duke Math. J., 80, pp. 383-417
  • Li, Y., Zhu, M., Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries (1997) Comm. Pure Appl. Math., 50, pp. 449-487
  • Lindqvist, P., On the equation pu+λ (1990) Proc. Amer. Math. Soc., 109, pp. 157-164. , 1
  • Lions, P.L., The concentration-compactness principle in the calculus of variations. The limit case, Part 1 (1985) Rev. Mat. Iberoamericana, 1 (1), pp. 145-201
  • Lions, P.L., The concentration-compactness principle in the calculus of variations. The limit case, Part 2 (1985) Rev. Mat. Iberoamericana, 1 (2), pp. 45-121
  • Lions, P.L., Pacella, F., Tricarico, M., Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions (1988) Indiana Univ. Math. J., 37 (2), pp. 301-324
  • Mancebo, F.J., Vega, J.M., A model of porous catalyst accounting for incipiently non-isothermal effects (1999) J. Differential Equations, 151 (1), pp. 79-110
  • Martinez, S., Rossi, J.D., Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition (2002) Abstr. Appl. Anal., 7 (5), pp. 287-293
  • Martinez, S., Rossi, J.D., Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance (2003) Electron. J. Differential Equations, 27, pp. 1-14
  • Martinez, S., Rossi, J.D., On the Fučik spectrum and a resonance problem for the p-Laplacian with a nonlinear boundary condition (2004) Nonlinear Anal., 59 (6), pp. 813-848
  • Montefusco, E., Radulescu, V., Nonlinear eigenvalue problems for quasilinear operators on unbounded domains (2001) NoDEA Nonlinear Differential Equations Appl., 8, pp. 481-497
  • Motron, M., Around the best constants for the Sobolev trace map from W1, 1 (Ω) into Ll (∂Ω) (2002) Asymptot. Anal., 29, pp. 69-90
  • Park, Y.J., Sobolev trace inequalities Preprint; Park, Y.J., Logarithmic Sobolev trace inequality (2004) Proc. Amer. Math. Soc., 132, pp. 2075-2083. , 7
  • Pflüger, K., Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition (1998) Electron. J. Differential Equations, 10 (1-13)
  • Pierrotti, D., Terracini, S., On a Neumann problem with critical exponent and critical nonlinearity on the boundary (1995) Comm. Partial Differential Equations, 20 (7-8), pp. 1155-1187
  • Pierrotti, D., Terracini, S., On a Neumann problem involving two critical Sobolev exponents: Remarks on geometrical and topological aspects (1997) Calc. Var. Partial Differential Equations, 5, pp. 271-291
  • Rabinowitz, P., Minimax Methods in Critical Point Theory with Applications to Differential Equations (1986) CBMS Reg. Conf. Ser. Math., , Amer. Math. Soc., New York
  • Reichel, W., Zou, W., Nonexistence results for semilinear cooperative elliptic systems via moving spheres (2000) J. Differential Equations, 161, pp. 219-243
  • Schechter, M., Zou, W., An infinite-dimensional linking theorem and applications (2004) J. Differential Equa- tions, 201 (2), pp. 324-350
  • Simon, J., Regularité de la solution d'unproblème aux limites non linéaires (1981) Ann. Fac. Sci. Toulouse Math., III (6), pp. 247-274
  • Stampacchia, G., Problemi al contorno ellitici, con dati discontinui, dotati di soluzioni hölderiane (1960) Ann. Mat. Pura Appl., 51 (4), pp. 1-37. , in Italian
  • Steklov, M.W., Sur les problèmes fondamentaux en physique mathématique (1902) Ann. Sci. Ecole Norm. Sup., 19, pp. 455-490
  • Sweers, G., LN is sharp for the antimaximum principle (1997) J. Differential Equations, 134, pp. 148-153
  • Terracini, S., Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions (1995) Differential Integral Equations, 8 (8), pp. 1911-1922
  • Thayer, J., (1987) Operadores Auto-Adjuntos e Equacões Diferenciais Parciais, , IMPA, Projecto Euclides, Providence, RI
  • Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations (1984) J. Differential Equations, 51, pp. 126-150
  • Trudinger, N., Remarks concerning the conformal deformation of Riemannian structures on compact manifolds (1968) Ann. Scuola Norm. Sup. Pisa, 22, pp. 265-274
  • Umezu, K., Nonlinear elliptic boundary value problems suggested by fermentation (2000) NoDEA Nonlinear Differential Equations Appl., 7 (2), pp. 143-155
  • Umezu, K., Global positive solution branches of positone problems with nonlinear boundary conditions (2000) Differential Integral Equations, 13 (4-6), pp. 669-686
  • Vazquez, J.L., A strong maximum principle for some quasilinear elliptic equations (1984) Appl. Math. Optim., 12 (3), pp. 191-202
  • Zhu, M., On elliptic problems with indefinite superlinear boundary conditions (2003) J. Differential Equations, 193, pp. 180-195
  • Zou, W., Li, S., New linking theorem and elliptic systems with nonlinear boundary condition (2003) Nonlinear Anal., 52, pp. 1797-1820

Citas:

---------- APA ----------
(2005) . Chapter 5 Elliptic problems with nonlinear boundary conditions and the sobolev trace theorem. Handbook of Differential Equations: Stationary Partial Differential Equations, 2, 311-406.
http://dx.doi.org/10.1016/S1874-5733(05)80013-0
---------- CHICAGO ----------
Rossi, J.D. "Chapter 5 Elliptic problems with nonlinear boundary conditions and the sobolev trace theorem" . Handbook of Differential Equations: Stationary Partial Differential Equations 2 (2005) : 311-406.
http://dx.doi.org/10.1016/S1874-5733(05)80013-0
---------- MLA ----------
Rossi, J.D. "Chapter 5 Elliptic problems with nonlinear boundary conditions and the sobolev trace theorem" . Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 2, 2005, pp. 311-406.
http://dx.doi.org/10.1016/S1874-5733(05)80013-0
---------- VANCOUVER ----------
Rossi, J.D. Chapter 5 Elliptic problems with nonlinear boundary conditions and the sobolev trace theorem. Handb. Differ. Equ. : Station. Partial Differ. Equ. 2005;2:311-406.
http://dx.doi.org/10.1016/S1874-5733(05)80013-0