Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Control of protein synthesis and quality are critical steps to support eukaryotic cells' maintenance and survival. Two very distinctive mechanisms emerge as key checkpoints of protein synthesis regulation. The first one is the delivery of mRNA molecules, packed into ribonucleoprotein (mRNP) granules, to specific subcellular regions in order to restrict protein synthesis to distinct cytoplasmic domains. In the presence of cellular stress or injury, translation is aborted by sequestering mRNA molecules into a sub-type of RNP particles called stress granules (SGs). The second mechanism deals with the folding state and further processing of synthesized proteins. Misbehavior of a particular protein, affecting its processing, functioning, and/or conformation can cause the formation of protein inclusions called aggresomes. Interestingly, self-aggregation of abnormal proteins is one of the leading causes of neurodegenerative disorders. Recently, intracellular transport directed by microtubule-motors, has emerged as an important step in the assembly and dynamic of SGs and aggresomes. This mechanism allows for a precise temporal and spatial trafficking of RNA and protein complexes. Furthermore, it facilitates the regulation of the RNA silencing domains and targets abnormal protein aggregates for degradation. In this review we will explore the specific and common features of mRNA transport and of SG and aggresome formation, and will provide details on the role of the microtubule network and motors in their movement and dynamics. © 2011 Bentham Science Publishers Ltd.

Registro:

Documento: Artículo
Título:Common themes in RNA subcellular transport, stress granule formation and abnormal protein aggregation
Autor:Benseñor, L.B.; Vazquez, M.S.; Boccaccio, G.L.
Filiación:Instituto Leloir, Avenida Patricias Argentinas 435, C1405BWE-Buenos Aires, Argentina
IIBBA CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
IIBBA-CONICET, C1405BWE-Buenos Aires, Argentina
Palabras clave:Abnormal protein aggregates; Aggresome; Cell stress; Cytoskeleton; Dynein; Kinesin; RNP; Stress granules; ribonucleoprotein; aggresome; cell damage; cell stress; cell survival; degenerative disease; eukaryotic cell; gene silencing; human; microtubule; nonhuman; priority journal; protein aggregation; protein conformation; protein folding; protein synthesis; review; RNA translation; RNA transport; stress granule; Eukaryota
Año:2011
Volumen:5
Número:2
Página de inicio:77
Página de fin:89
DOI: http://dx.doi.org/10.2174/187231311795243373
Título revista:Current Chemical Biology
Título revista abreviado:Curr. Chem. Biol.
ISSN:18723136
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18723136_v5_n2_p77_Bensenor

Referencias:

  • Martin, K.C., Ephrussi, A., mRNA localization: Gene expression in the spatial dimension (2009) Cell, 136, pp. 719-730
  • Coller, J., Parker, R., General translational repression by activators of mRNA decapping (2005) Cell, 122, pp. 875-886
  • Holmes, L.E., Campbell, S.G., De Long, S.K., Sachs, A.B., Ashe, M.P., Loss of translational control in yeast compromised for the major mRNA decay pathway (2004) Mol Cell Biol, 24, pp. 2998-3010
  • Anderson, P., Kedersha, N., RNA granules (2006) J Cell Biol, 172, pp. 803-808
  • Franks, T.M., Lykke-Andersen, J., The control of mRNA decapping and P-body formation (2008) Mol Cell, 32, pp. 605-615
  • Parker, R., Sheth, U., P bodies and the control of mRNA translation and degradation (2007) Mol Cell, 25, pp. 635-646
  • Thomas, M.G., Loschi, M., Desbats, M.A., Boccaccio, G.L., RNA granules: The good, the bad and the ugly (2011) Cell Signal, 23, pp. 324-334
  • Seydoux, G., Braun, R.E., Pathway to totipotency: Lessons from germ cells (2006) Cell, 127, pp. 891-904
  • Kiebler, M.A., Bassell, G.J., Neuronal RNA granules: Movers and makers (2006) Neuron, 51, pp. 685-690
  • Johnston, J.A., Ward, C.L., Kopito, R.R., Aggresomes: A cellular response to misfolded proteins (1998) J Cell Biol, 143, pp. 1883-1898
  • Garcia-Mata, R., Bebok, Z., Sorscher, E.J., Sztul, E.S., Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera (1999) J Cell Biol, 146, pp. 1239-1254
  • Holt, C.E., Bullock, S.L., Subcellular mRNA localization in animal cells and why it matters (2009) Science, 326, pp. 1212-1216
  • Yildiz, A., Selvin, P.R., Kinesin: Walking, crawling or sliding along? (2005) Trends Cell Biol, 15, pp. 112-120
  • Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R., Kinesin walks handover-hand (2004) Science, 303, pp. 676-678
  • Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V.I., Selvin, P.R., Kinesin and dynein move a peroxisome in vivo: A tug-of-war or coordinated movement? (2005) Science, 308, pp. 1469-1472
  • Shubeita, G.T., Tran, S.L., Xu, J., Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets (2008) Cell, 135, pp. 1098-1107
  • Delanoue, R., Davis, I., Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo (2005) Cell, 122, pp. 97-106
  • Delanoue, R., Herpers, B., Soetaert, J., Davis, I., Rabouille, C., Drosophila Squid/hnRNP helps Dynein switch from a gurken mRNA transport motor to an ultrastructural static anchor in sponge bodies (2007) Dev Cell, 13, pp. 523-538
  • McDougall, N., Clark, A., McDougall, E., Davis, I., Drosophila gurken (TGFalpha) mRNA localizes as particles that move within the oocyte in two dynein-dependent steps (2003) Dev Cell, 4, pp. 307-319
  • Duncan, J.E., Warrior, R., The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte (2002) Curr Biol, 12, pp. 1982-1991
  • Januschke, J., Gervais, L., Dass, S., Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation (2002) Curr Biol, 12, pp. 1971-1981
  • Zimyanin, V.L., Belaya, K., Pecreaux, J., In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization (2008) Cell, 134, pp. 843-853
  • Bullock, S.L., Nicol, A., Gross, S.P., Zicha, D., Guidance of bidirectional motor complexes by mRNA cargoes through control of dynein number and activity (2006) Curr Biol, 16, pp. 1447-1452
  • Kanai, Y., Dohmae, N., Hirokawa, N., Kinesin transports RNA: Isolation and characterization of an RNA-transporting granule (2004) Neuron, 43, pp. 513-525
  • Kiebler, M.A., Hemraj, I., Verkade, P., The mammalian staufen protein localizes to the somatodendritic domain of cultured hippocampal neurons: Implications for its involvement in mRNA transport (1999) J Neurosci, 19, pp. 288-297
  • Tang, S.J., Meulemans, D., Vazquez, L., Colaco, N., Schuman, E., A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites (2001) Neuron, 32, pp. 463-475
  • Dictenberg, J.B., Swanger, S.A., Antar, L.N., Singer, R.H., Bassell, G.J., A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome (2008) Dev Cell, 14, pp. 926-939
  • Davidovic, L., Jaglin, X.H., Lepagnol-Bestel, A.M., The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules (2007) Hum Mol Genet, 16 (24), pp. 3047-3058
  • Sossin, W.S., des Groseillers, L., Intracellular trafficking of RNA in neurons (2006) Traffic, 7, pp. 1581-1589
  • Abrahamyan, L.G., Chatel-Chaix, L., Ajamian, L., Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA (2010) J Cell Sci, 123 (PART 3), pp. 369-383
  • Buchan, J.R., Yoon, J.H., Parker, R., Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae (2011) J Cell Sci, 124 (PART 2), pp. 228-239
  • Ling, S.C., Fahrner, P.S., Greenough, W.T., Gelfand, V.I., Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein (2004) Proc Natl Acad Sci USA, 101, pp. 17428-17433
  • Loschi, M., Leishman, C.C., Berardone, N., Boccaccio, G.L., Dynein and kinesin regulate stress-granule and P-body dynamics (2009) J Cell Sci, 122 (PART 21), pp. 3973-3982
  • Nadezhdina, E.S., Lomakin, A.J., Shpilman, A.A., Chudinova, E.M., Ivanov, P.A., Microtubules govern stress granule mobility and dynamics (2010) Biochim Biophys Acta, 1803, pp. 361-371
  • Noble, S.L., Allen, B.L., Goh, L.K., Nordick, K., Evans, T.C., Maternal mRNAs are regulated by diverse P body-related mRNP granules during early Caenorhabditis elegans development (2008) J Cell Biol, 182, pp. 559-572
  • Schneider, I., Cell lines derived from late embryonic stages of Drosophila melanogaster (1972) J Embryol Exp Morphol, 27, pp. 353-365
  • Yanagawa, S., Lee, J.S., Ishimoto, A., Identification and characterization of a novel line of Drosophila Schneider S2 cells that respond to wingless signaling (1998) J Biol Chem, 273, pp. 32353-32359
  • Rogers, S.L., Rogers, G.C., Culture of Drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy (2008) Nat Protoc, 3, pp. 606-611
  • Ally, S., Larson, A.G., Barlan, K., Rice, S.E., Gelfand, V.I., Oppositepolarity motors activate one another to trigger cargo transport in live cells (2009) J Cell Biol, 187, pp. 1071-1082
  • Bensenor, L.B., Barlan, K., Rice, S.E., Fehon, R.G., Gelfand, V.I., Microtubule-mediated transport of the tumor-suppressor protein Merlin and its mutants (2010) Proc Natl Acad Sci USA, 107, pp. 7311-7316
  • Jolly, A.L., Kim, H., Srinivasan, D., Lakonishok, M., Larson, A.G., Gelfand, V.I., Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape (2010) Proc Natl Acad Sci USA, 107, pp. 12151-12156
  • Kim, H., Ling, S.C., Rogers, G.C., Microtubule binding by dynactin is required for microtubule organization but not cargo transport (2007) J Cell Biol, 176, pp. 641-651
  • Kuznetsov, S.A., Gelfand, V.I., Bovine brain kinesin is a microtubuleactivated ATPase (1986) Proc Nat Acad Sci USA, 83, pp. 8530-8534
  • Rogers, S.L., Rogers, G.C., Sharp, D.J., Vale, R.D., Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle (2002) J Cell Biol, 158, pp. 873-884
  • Kloc, M., Dougherty, M.T., Bilinski, S., Three-dimensional ultrastructural analysis of RNA distribution within germinal granules of Xenopus (2002) Dev Biol, 241, pp. 79-93
  • Micklem, D.R., Adams, J., Grunert, S., St. Johnston, D., Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation (2000) Embo J, 19, pp. 1366-1377
  • Yoon, J.H., Choi, E.J., Parker, R., Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae (2010) J Cell Biol, 189, pp. 813-827
  • Nimchinsky, E.A., Oberlander, A.M., Svoboda, K., Abnormal development of dendritic spines in FMR1 knock-out mice (2001) J Neurosci, 21, pp. 5139-5146
  • Didiot, M.C., Subramanian, M., Flatter, E., Mandel, J.L., Moine, H., Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly (2009) Mol Biol Cell, 20, pp. 428-437
  • Thomas, M.G., Tosar, L.J., Desbats, M.A., Leishman, C.C., Boccaccio, G.L., Mammalian Staufen 1 is recruited to stress granules and impairs their assembly (2009) J Cell Sci, 122 (PART 4), pp. 563-573
  • Vessey, J.P., Macchi, P., Stein, J.M., A loss of function allele for murine Staufen1 leads to impairment of dendritic Staufen1-RNP delivery and dendritic spine morphogenesis (2008) Proc Natl Acad Sci USA, 105, pp. 16374-16379
  • Zalfa, F., Achsel, T., Bagni, C., mRNPs, polysomes or granules: FMRP in neuronal protein synthesis (2006) Curr Opin Neurobiol, 16, pp. 265-269
  • Anderson, P., Kedersha, N., Stress granules: The Tao of RNA triage (2008) Trends Biochem Sci, 33, pp. 141-150
  • Blumenthal, J., Behar, L., Elliott, E., Ginzburg, I., Dcp1a phosphorylation along neuronal development and stress (2009) FEBS Lett, 583, pp. 197-201
  • Kwon, S., Zhang, Y., Matthias, P., The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response (2007) Genes Dev, 21, pp. 3381-3394
  • Ohn, T., Kedersha, N., Hickman, T., Tisdale, S., Anderson, P., A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly (2008) Nat Cell Biol, 10, pp. 1224-1231
  • Hu, P., Shimoji, S., Hart, G.W., Site-specific interplay between OGlcNAcylation and phosphorylation in cellular regulation (2010) FEBS Lett, 584, pp. 2526-2538
  • Morfini, G.A., You, Y.M., Pollema, S.L., Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin (2009) Nat Neurosci, 12, pp. 864-871
  • Tsai, N.P., Wei, L.N., RhoA/ROCK1 signaling regulates stress granule formation and apoptosis (2010) Cell Signal, 22, pp. 668-675
  • Morfini, G.A., Burns, M., Binder, L.I., Axonal transport defects in neurodegenerative diseases (2009) J Neurosci, 29, pp. 12776-12786
  • Mazroui, R., di Marco, S., Kaufman, R.J., Gallouzi, I.E., Inhibition of the ubiquitin-proteasome system induces stress granule formation (2007) Mol Biol Cell, 18, pp. 2603-2618
  • Soncini, C., Berdo, I., Draetta, G., Ras-GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease (2001) Oncogene, 20, pp. 3869-3879
  • Kraft, C., Deplazes, A., Sohrmann, M., Peter, M., Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease (2008) Nat Cell Biol, 10, pp. 602-610
  • Scadden, A.D., Inosine-containing dsRNA binds a stress-granule-like complex and downregulates gene expression in trans (2007) Mol Cell, 28, pp. 491-500
  • Bass, B.L., RNA editing by adenosine deaminases that act on RNA (2002) Annu Rev Biochem, 71, pp. 817-846
  • Blow, M., Futreal, P.A., Wooster, R., Stratton, M.R., A survey of RNA editing in human brain (2004) Genome Res, 14, pp. 2379-2387
  • Levanon, E.Y., Eisenberg, E., Yelin, R., Systematic identification of abundant A-to-I editing sites in the human transcriptome (2004) Nat Biotechnol, 22, pp. 1001-1005
  • Morse, D.P., Aruscavage, P.J., Bass, B.L., RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA (2002) Proc Natl Acad Sci USA, 99, pp. 7906-7911
  • Brouha, B., Schustak, J., Badge, R.M., Hot L1s account for the bulk of retrotransposition in the human population (2003) Proc Natl Acad Sci USA, 100, pp. 5280-5285
  • Jin, P., Zarnescu, D.C., Ceman, S., Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway (2004) Nat Neurosci, 7, pp. 113-117
  • Souquere, S., Mollet, S., Kress, M., Dautry, F., Pierron, G., Weil, D., Unravelling the ultrastructure of stress granules and associated Pbodies in human cells (2009) J Cell Sci, 15-122 (PART 20), pp. 3619-3626
  • Moser, J.J., Eystathioy, T., Chan, E.K., Fritzler, M.J., Markers of mRNA stabilization and degradation, and RNAi within astrocytoma GW bodies (2007) J Neurosci Res, 85, pp. 3619-3631
  • Goodier, J.L., Zhang, L., Vetter, M.R., Kazazian Jr., H.H., LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex (2007) Mol Cell Biol, 27, pp. 6469-6483
  • Gibbings, D., Voinnet, O., Control of RNA silencing and localization by endolysosomes (2010) Trends Cell Biol, 20, pp. 491-501
  • Pepper, A.S., Beerman, R.W., Bhogal, B., Jongens, T.A., Argonaute2 suppresses Drosophila fragile X expression preventing neurogenesis and oogenesis defects (2009) PLoS One, 4, pp. e7618
  • Wang, H.W., Noland, C., Siridechadilok, B., Structural insights into RNA processing by the human RISC-loading complex (2009) Nat Struct Mol Biol, 16, pp. 1148-1153
  • Kedersha, N., Chen, S., Gilks, N., Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules (2002) Mol Biol Cell, 13, pp. 195-210
  • Kedersha, N., Stoecklin, G., Ayodele, M., Stress granules and processing bodies are dynamically linked sites of mRNP remodeling (2005) J Cell Biol, 169, pp. 871-884
  • Young, J.C., Barral, J.M., Ulrich Hartl, F., More than folding: Localized functions of cytosolic chaperones (2003) Trends Biochem Sci, 28, pp. 541-547
  • Tourriere, H., Chebli, K., Zekri, L., The RasGAP-associated endoribonuclease G3BP assembles stress granules (2003) J Cell Biol, 160, pp. 823-831
  • Schubert, U., Anton, L.C., Gibbs, J., Norbury, C.C., Yewdell, J.W., Bennink, J.R., Rapid degradation of a large fraction of newly synthesized proteins by proteasomes (2000) Nature, 404, pp. 770-774
  • Ellgaard, L., Helenius, A., ER quality control: Towards an understanding at the molecular level (2001) Curr Opin Cell Biol, 13, pp. 431-437
  • Imai, J., Yashiroda, H., Maruya, M., Yahara, I., Tanaka, K., Proteasomes and molecular chaperones: Cellular machinery responsible for folding and destruction of unfolded proteins (2003) Cell Cycle, 2, pp. 585-590
  • Rock, K.L., Gramm, C., Rothstein, L., Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules (1994) Cell, 78, pp. 761-771
  • Wojcik, C., de Martino, G.N., Intracellular localization of proteasomes (2003) Int J Biochem Cell Biol, 35, pp. 579-589
  • Wojcik, C., Schroeter, D., Stoehr, M., Wilk, S., Paweletz, N., An inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S proteasome) induces arrest in G2-phase and metaphase in HeLa cells (1996) Eur J Cell Biol, 70, pp. 172-178
  • Johnston, J.A., Dalton, M.J., Gurney, M.E., Kopito, R.R., Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis (2000) Proc Natl Acad Sci USA, 97, pp. 12571-12576
  • Kristiansen, M., Messenger, M.J., Klohn, P.C., Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis (2005) J Biol Chem, 280, pp. 38851-38861
  • McNaught, K.S., Mytilineou, C., Jnobaptiste, R., Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures (2002) J Neurochem, 81, pp. 301-306
  • Olanow, C.W., Perl, D.P., de Martino, G.N., McNaught, K.S., Lewy-body formation is an aggresome-related process: A hypothesis (2004) Lancet Neurol, 3, pp. 496-503
  • Beaudoin, S., Goggin, K., Bissonnette, C., Grenier, C., Roucou, X., Aggresomes do not represent a general cellular response to protein misfolding in mammalian cells (2008) BMC Cell Biol, 9, p. 59
  • Kakizuka, A., Protein precipitation: A common etiology in neurodegenerative disorders? (1998) Trends Genet, 14, pp. 396-402
  • Ross, C.A., Poirier, M.A., Protein aggregation and neurodegenerative disease (2004) Nat Med, 10 (SUPPL), pp. S10-7
  • Soto, C., Unfolding the role of protein misfolding in neurodegenerative diseases (2003) Nat Rev Neurosci, 4, pp. 49-60
  • Thomas, M.G., Martinez Tosar, L.J., Loschi, M., Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes (2005) Mol Biol Cell, 16, pp. 405-420
  • Fujimura, K., Katahira, J., Kano, F., Yoneda, Y., Murata, M., Microscopic dissection of the process of stress granule assembly (2009) Biochim Biophys Acta, 1793, pp. 1728-1737
  • Ivanov, P.A., Chudinova, E.M., Nadezhdina, E.S., Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation (2003) Exp Cell Res, 290, pp. 227-233
  • Kolobova, E., Efimov, A., Kaverina, I., Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules (2009) Exp Cell Res, 315, pp. 542-555
  • Kedersha, N., Cho, M.R., Li, W., Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules (2000) J Cell Biol, 151, pp. 1257-1268
  • Tsai, N.P., Tsui, Y.C., Wei, L.N., Dynein motor contributes to stress granule dynamics in primary neurons (2009) Neuroscience, 159, pp. 647-656
  • Hasek, J., Kovarik, P., Valasek, L., Rpg1p, the subunit of the Saccharomyces cerevisiae eIF3 core complex, is a microtubuleinteracting protein (2000) Cell Motil Cytoskeleton, 45, pp. 235-246
  • de Boer, S.R., You, Y., Szodorai, A., Conventional kinesin holoenzymes are composed of heavy and light chain homodimers (2008) Biochemistry, 47, pp. 4535-4543
  • Vale, R.D., The molecular motor toolbox for intracellular transport (2003) Cell, 112, pp. 467-480
  • Morfini, G., Pigino, G., Opalach, K., 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C (2007) Proc Natl Acad Sci USA, 104, pp. 2442-2447
  • Prusiner, S.B., Hsiao, K.K., Human prion diseases (1994) Ann Neurol, 35, pp. 385-395
  • Perutz, M.F., Amyloid fibrils. Mutations make enzyme polymerize (1997) Nature, 385, pp. 773-775
  • Burakov, A., Kovalenko, O., Semenova, I., Zhapparova, O., Nadezhdina, E., Rodionov, V., Cytoplasmic dynein is involved in the retention of microtubules at the centrosome in interphase cells (2008) Traffic, 9, pp. 472-480
  • Deacon, S.W., Serpinskaya, A.S., Vaughan, P.S., Dynactin is required for bidirectional organelle transport (2003) J Cell Biol, 160, pp. 297-301
  • Johnston, J.A., Illing, M.E., Kopito, R.R., Cytoplasmic dynein/dynactin mediates the assembly of aggresomes (2002) Cell Motil Cytoskeleton, 53, pp. 26-38
  • Munch, C., Sedlmeier, R., Meyer, T., Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS (2004) Neurology, 63, pp. 724-726
  • Munch, C., Rosenbohm, A., Sperfeld, A.D., Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD (2005) Ann Neurol, 58, pp. 777-780
  • Hafezparast, M., Klocke, R., Ruhrberg, C., Mutations in dynein link motor neuron degeneration to defects in retrograde transport (2003) Science, 300, pp. 808-812
  • la Monte, B.H., Wallace, K.E., Holloway, B.A., Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration (2002) Neuron, 34, pp. 715-727
  • Iwata, A., Riley, B.E., Johnston, J.A., Kopito, R.R., HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin (2005) J Biol Chem, 280, pp. 40282-40292
  • Wang, L., Nguyen, T.V., McLaughlin, R.W., Sikkink, L.A., Ramirez-Alvarado, M., Weinshilboum, R.M., Human thiopurine Smethyltransferase pharmacogenetics: Variant allozyme misfolding and aggresome formation (2005) Proc Natl Acad Sci USA, 102, pp. 9394-9399
  • Kawaguchi, Y., Kovacs, J.J., McLaurin, A., Vance, J.M., Ito, A., Yao, T.P., The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress (2003) Cell, 115, pp. 727-738
  • Hideshima, T., Bradner, J.E., Chauhan, D., Anderson, K.C., Intracellular protein degradation and its therapeutic implications (2005) Clin Cancer Res, 11 (24 PART 1), pp. 8530-8533
  • Dompierre, J.P., Godin, J.D., Charrin, B.C., Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation (2007) J Neurosci, 27, pp. 3571-3583
  • Reed, N.A., Cai, D., Blasius, T.L., Microtubule acetylation promotes kinesin-1 binding and transport (2006) Curr Biol, 16, pp. 2166-2172
  • Williams, A.J., Paulson, H.L., Polyglutamine neurodegeneration: Protein misfolding revisited (2008) Trends Neurosci, 31, pp. 521-528
  • Lee, H.J., Lee, S.J., Characterization of cytoplasmic alpha-synuclein aggregates. Fibril formation is tightly linked to the inclusionforming process in cells (2002) J Biol Chem, 277, pp. 48976-48983
  • Shin, Y., Klucken, J., Patterson, C., Hyman, B.T., McLean, P.J., The cochaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways (2005) J Biol Chem, 280, pp. 23727-23734
  • Ardley, H.C., Scott, G.B., Rose, S.A., Tan, N.G., Robinson, P.A., UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson's disease (2004) J Neurochem, 90, pp. 379-391
  • Neumann, M., Sampathu, D.M., Kwong, L.K., Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis (2006) Science, 314, pp. 130-133
  • Perry, G., Friedman, R., Kang, D.H., Manetto, V., Autilio-Gambetti, L., Gambetti, P., Antibodies to the neuronal cytoskeleton are elicited by Alzheimer paired helical filament fractions (1987) Brain Res., 420, pp. 233-242
  • Rujano, M.A., Bosveld, F., Salomons, F.A., Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes (2006) PLoS Biol, 4, pp. e417
  • Arai, T., Hasegawa, M., Akiyama, H., TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis (2006) Biochem Biophys Res Commun, 351, pp. 602-611
  • Buratti, E., Baralle, F.E., The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation (2010) RNA Biol, 7, pp. 420-429
  • Hasegawa, M., Arai, T., Nonaka, T., Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis (2008) Ann Neurol, 64, pp. 60-70
  • Zhang, Y.J., Xu, Y.F., Dickey, C.A., Progranulin mediates caspasedependent cleavage of TAR DNA binding protein-43 (2007) J Neurosci, 27, pp. 10530-10534
  • Zhang, Y.J., Xu, Y.F., Cook, C., Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity (2009) Proc Natl Acad Sci USA, 106, pp. 7607-7612
  • Colombrita, C., Zennaro, E., Fallini, C., TDP-43 is recruited to stress granules in conditions of oxidative insult (2009) J Neurochem, 111, pp. 1051-1061
  • Nishimoto, Y., Ito, D., Yagi, T., Nihei, Y., Tsunoda, Y., Suzuki, N., Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43 (2010) J Biol Chem, 285, pp. 608-619
  • Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H., Strong, M.J., Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS) (2009) Brain Res, 1305, pp. 168-182
  • Liu-Yesucevitz, L., Bilgutay, A., Zhang, Y.J., Tar DNA binding protein-43 (TDP-43) associates with stress granules: Analysis of cultured cells and pathological brain tissue (2010) PLoS One, 5, pp. e13250
  • Hubbert, C., Guardiola, A., Shao, R., HDAC6 is a microtubuleassociated deacetylase (2002) Nature, 417, pp. 455-458
  • Matsuyama, A., Shimazu, T., Sumida, Y., In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation (2002) Embo J, 21, pp. 6820-6831
  • Iliev, A.I., Djannatian, J.R., Opazo, F., Rapid microtubule bundling and stabilization by the Streptococcus pneumoniae neurotoxin pneumolysin in a cholesterol-dependent, non-lytic and Srckinase dependent manner inhibits intracellular trafficking (2009) Mol Microbiol, 71, pp. 461-477
  • Tonami, K., Kurihara, Y., Aburatani, H., Uchijima, Y., Asano, T., Kurihara, H., Calpain 6 is involved in microtubule stabilization and cytoskeletal organization (2007) Mol Cell Biol, 27, pp. 2548-2561
  • Gao, Y.S., Hubbert, C.C., Yao, T.P., The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation J Biol Chem, 285, pp. 11219-11226
  • Pugacheva, E.N., Jablonski, S.A., Hartman, T.R., Henske, E.P., Golemis, E.A., HEF1-dependent Aurora A activation induces disassembly of the primary cilium (2007) Cell, 129, pp. 1351-1363
  • Naranatt, P.P., Krishnan, H.H., Smith, M.S., Chandran, B., Kaposi's sarcoma-associated herpesvirus modulates microtubule dynamics via RhoA-GTP-diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus (2005) J Virol, 79, pp. 1191-1206
  • Warren, J.C., Rutkowski, A., Cassimeris, L., Infection with replicationdeficient adenovirus induces changes in the dynamic instability of host cell microtubules (2006) Mol Biol Cell, 17, pp. 3557-3568
  • Gitcho, M.A., Baloh, R.H., Chakraverty, S., TDP-43 A315T mutation in familial motor neuron disease (2008) Ann Neurol, 63, pp. 535-538
  • van Deerlin, V.M., Leverenz, J.B., Bekris, L.M., TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: A genetic and histopathological analysis (2008) Lancet Neurol, 7, pp. 409-416
  • Sreedharan, J., Blair, I.P., Tripathi, V.B., TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis (2008) Science, 319, pp. 1668-1672
  • Rutherford, N.J., Zhang, Y.J., Baker, M., Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis (2008) PLoS Genet, 4, pp. e1000193
  • Kabashi, E., Daoud, H., Riviere, J.B., No TARDBP mutations in a French Canadian population of patients with Parkinson disease (2009) Arch Neurol, 66, pp. 281-282
  • Yokoseki, A., Shiga, A., Tan, C.F., TDP-43 mutation in familial amyotrophic lateral sclerosis (2008) Ann Neurol, 63, pp. 538-542
  • Arai, T., Ikeda, K., Akiyama, H., Identification of aminoterminally cleaved tau fragments that distinguish progressive supranuclear palsy from corticobasal degeneration (2004) Ann Neurol, 55, pp. 72-79
  • di Figlia, M., Sapp, E., Chase, K.O., Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain (1997) Science, 277, pp. 1990-1993
  • Mende-Mueller, L.M., Toneff, T., Hwang, S.R., Chesselet, M.F., Hook, V.Y., Tissue-specific proteolysis of Huntingtin (htt) in human brain: Evidence of enhanced levels of N-and C-terminal htt fragments in Huntington's disease striatum (2001) J Neurosci, 21, pp. 1830-1837
  • Selkoe, D.J., Yamazaki, T., Citron, M., The role of APP processing and trafficking pathways in the formation of amyloid betaprotein (1996) Ann N Y Acad Sci, 777, pp. 57-64
  • Sisodia, S.S., Price, D.L., Role of the beta-amyloid protein in Alzheimer's disease (1995) Faseb J, 9, pp. 366-370
  • Dekanty, A., Romero, N.M., Bertolin, A.P., Drosophila genomewide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia (2010) PLoS Genet, 6, pp. e1000994

Citas:

---------- APA ----------
Benseñor, L.B., Vazquez, M.S. & Boccaccio, G.L. (2011) . Common themes in RNA subcellular transport, stress granule formation and abnormal protein aggregation. Current Chemical Biology, 5(2), 77-89.
http://dx.doi.org/10.2174/187231311795243373
---------- CHICAGO ----------
Benseñor, L.B., Vazquez, M.S., Boccaccio, G.L. "Common themes in RNA subcellular transport, stress granule formation and abnormal protein aggregation" . Current Chemical Biology 5, no. 2 (2011) : 77-89.
http://dx.doi.org/10.2174/187231311795243373
---------- MLA ----------
Benseñor, L.B., Vazquez, M.S., Boccaccio, G.L. "Common themes in RNA subcellular transport, stress granule formation and abnormal protein aggregation" . Current Chemical Biology, vol. 5, no. 2, 2011, pp. 77-89.
http://dx.doi.org/10.2174/187231311795243373
---------- VANCOUVER ----------
Benseñor, L.B., Vazquez, M.S., Boccaccio, G.L. Common themes in RNA subcellular transport, stress granule formation and abnormal protein aggregation. Curr. Chem. Biol. 2011;5(2):77-89.
http://dx.doi.org/10.2174/187231311795243373