Arcos, M.L.B.; Sterle, H.; Cayrol, F.; Flaqué, M.C.D.; Valli, E.; Paulazo, M.A.; Klecha, A.J.; Cremaschi, G.A. "Classical and non-classical thyroid hormone intracellular pathways involved in T lymphoma growth" (2015) Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry. 15(1):37-42
Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor


Thyroid hormones (THs) are important regulators of cell physiology. They are essential for the normal development and growth of mammals, especially for the neural differentiation and the regulation of the metabolism and the immune system. THs also induce the proliferation of several cell types. In human and murine T cell lymphomas (TCL) this effect involves the participation of genomic and nongenomic mechanisms as it was described by the use of free THs and non-cell permeable THs coupled to agarose (TH-ag). The classic actions of thyroid hormones involve the alteration of gene transcription via specific nuclear receptors. The discovery of other effects, independent of this classic mechanism, characterizes a new and non-classic mechanism that involves different signaling pathways. Both, free THs and TH-ag, activate protein kinase C, extracellular signalregulated kinases and NF-kB and they increase the intracellular calcium levels. However, only the preincubation of T cells with free THs leads to an increased intracellular content of signaling enzymes. T lymphomas display high expression levels of both, the TH nuclear receptors (TRs) and the putative membrane receptor for THs, the integrin αvβ3, which has been demonstrated to be responsible for THs non-genomic actions. Here, we reviewed the mechanisms involved in THs modulation of the lymphocyte physiology, analyzing the interplay between genomic and nongenomic actions in T cells and its contribution in the development of lymphomas. © 2015 Bentham Science Publishers.


Documento: Artículo
Título:Classical and non-classical thyroid hormone intracellular pathways involved in T lymphoma growth
Autor:Arcos, M.L.B.; Sterle, H.; Cayrol, F.; Flaqué, M.C.D.; Valli, E.; Paulazo, M.A.; Klecha, A.J.; Cremaschi, G.A.
Filiación:Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Laboratorio de Radioisótopos, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Palabras clave:Genomic signaling; Integrin αvβ3; Nongenomic signaling; T cell lymphoma; Thyroid hormones; Tumor growth; basic fibroblast growth factor receptor; chemokine; epidermal growth factor; nitric oxide synthase; platelet derived growth factor; thyroid hormone; vasculotropin; angiogenesis; apoptosis; Article; breast carcinoma; cell cycle progression; cell division; cell proliferation; enzyme activity; gene expression; gene translocation; genetic association; genetic transcription; human; hyperthyroidism; hypothyroidism; immunoregulation; liver regeneration; lymphoma; regulatory mechanism; remission; signal transduction; survival; tumor growth; tumor regression; vascularization
Página de inicio:37
Página de fin:42
Título revista:Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry
Título revista abreviado:Immunol. Endocr. Metab. Agents Med. Chem.
CAS:epidermal growth factor, 59459-45-9, 62229-50-9; nitric oxide synthase, 125978-95-2; vasculotropin, 127464-60-2


  • Oetting, A., Yen, P.M., New insights into thyroid hormone action (2007) Best Pract. Res. Clin. Endocrinol. Metab, 21 (2), pp. 193-208
  • Zimmermann, M.B., Iodine deficiency (2009) Endocr. Rev, 30 (4), pp. 376-408
  • Rubio, I.G., Medeiros-Neto, G., Mutations of the thyroglobulin gene and its relevance to thyroid disorders (2009) Curr. Opin. Endocrinol. Diabetes Obes, 16 (5), pp. 373-378
  • Chiamolera, M.I., Wondisford, F.E., Minireview: Thyrotropinreleasing hormone and the thyroid hormone feedback mechanism (2009) Endocrinology, 150 (3), pp. 1091-1096
  • Di Cosmo, C., Liao, X.H., Dumitrescu, A.M., Philp, N.J., Weiss, R.E., Refetoff, S., Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion (2010) J. Clin. Invest, 120 (9), pp. 3377-3388
  • Mayerl, S., Visser, T.J., Darras, V.M., Horn, S., Heuer, H., Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain (2012) Endocrinology, 153 (3), pp. 1528-1537
  • Gereben, B., Zavacki, A.M., Ribich, S., Kim, B.W., Huang, S.A., Simonides, W.S., Zeöld, A., Bianco, A.C., Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling (2008) Endocr. Rev, 29 (7), pp. 898-938
  • Schweizer, U., Weitzel, J.M., Schomburg, L., Think globally: Act locally. New insights into the local regulation of thyroid hormone availability challenge long accepted dogmas (2008) Mol. Cell Endocrinol, 289 (1-2), pp. 1-9
  • Hernandez, A., Martinez, M.E., Liao, X.H., Van Sande, J., Refetoff, S., Galton, V.A., St Germain, D.L., Type 3 deiodinase deficiency results in functional abnormalities at multiple levels of the thyroid axis (2007) Endocrinology, 148 (12), pp. 5680-5687
  • Bassett, J.H., Harvey, C.B., Williams, G.R., Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions (2003) Mol. Cell. Endocrinol, 213, pp. 1-11
  • Lazar, M.A., Thyroid hormone action: A binding contract (2003) J. Clin. Invest, 112, pp. 497-499
  • Moeller, L.C., Broecker-Preuss, M., Transcriptional regulation by nonclassical action of thyroid hormone (2011) Thyroid Res, 4
  • Harvey, C.B., Williams, G.R., Mechanism of thyroid hormone action (2002) Thyroid, 12, pp. 441-446
  • Cheng, S.Y., Leonard, J.L., Davis, P.J., Molecular aspects of thyroid hormone actions (2010) Endocr. Rev, 31 (2), pp. 139-170
  • Rosen, M.D., Chan, I.H., Privalsky, M.L., Mutant thyroid hormone receptors (TRs) isolated from distinct cancer types display distinct target gene specificities: A unique regulatory repertoire associated with two renal clear cell carcinomas (2011) Mol. Endocrinol, 25 (8), pp. 1311-1325
  • Chan, I.H., Privalsky, M.L., A conserved lysine in the thyroid hormone receptor-alpha1 DNA-binding domain, mutated in hepatocel lular carcinoma, serves as a sensor for transcriptional regulation (2010) Mol. Cancer Res, 8 (1), pp. 15-23
  • Liu, Y., Xia, X., Fondell, J.D., Yen, P.M., Thyroid hormoneregulated target genes have distinct patterns of coactivator recruitment and histone acetylation (2006) Mol. Endocrinol, 20 (3), pp. 483-490
  • Williams, G.R., Neurodevelopmental and neurophysiological actions of thyroid hormone (2008) J. Neuroendocrinol, 20 (6), pp. 784-794
  • Bernal, J., Thyroid hormone receptors in brain development and function (2007) Nat. Clin. Pract. Endocrinol. Metab, 3 (3), pp. 249-259
  • Liu, Y.Y., Brent, G.A., Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation (2010) Trends Endocrinol. Metab, 21 (3), pp. 166-173
  • Figueiredo, N.B., Cestari, S.H., Conde, S.J., Luvizotto, R.A., De Sibio, M.T., Perone, D., Katayama, M.L., Nogueira, C.R., Estrogen-responsive genes overlap with triiodothyronine-responsive genes in a breast carcinoma cell line (2014) Scientific World J
  • Varga, F., Rumpler, M., Zoehrer, R., Turecek, C., Spitzer, S., Thaler, R., Paschalis, E.P., Klaushofer, K., T3 affects expression of collagen I and collagen cross-linking in bone cell cultures (2010) Biochem. Biophys. Res. Commun, 402 (2), pp. 18015-18018
  • Cordeiro, A., Souza, L.L., Einicker-Lamas, M., Pazos-Moura, C.C., Non-classic thyroid hormone signalling involved in hepatic lipid metabolism (2013) J. Endocrinol, 216 (3), pp. R47-R57
  • Potenza, M., Via, M.A., Yanagisawa, R.T., Excess thyroid hormone and carbohydrate metabolism (2009) Endocr. Pract, 15 (3), pp. 254-262
  • Martínez-Sánchez, N., Alvarez, C.V., Fernø, J., Nogueiras, R., Diéguez, C., López, M., Hypothalamic effects of thyroid hormones on metabolism (2014) Best Pract. Res. Clin. Endocrinol. Metab, 28 (5), pp. 703-712
  • Remaud, S., Gothié, J.D., Morvan-Dubois, G., Demeneix, B.A., Thyroid hormone signaling and adult neurogenesis in mammals (2014) Front Endocrinol, 5, p. 62
  • Klecha, A.J., Genaro, A.M., Gorelik, G., Barreiro Arcos, M.L., Silberman, D.M., Schuman, M., Garcia, S.I., Cremaschi, G.A., Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: Thyroid hormone-mediated modulation of lymphocyte activity through the protein kinase C signaling pathway (2006) J. Endocrinol, 189 (1), pp. 45-55
  • Klecha, A.J., Barreiro Arcos, M.L., Frick, L., Genaro, A.M., Cremaschi, G., Immune-endocrine interactions in autoimmune thyroid diseases (2008) Neuroimmunomodulation, 15 (1), pp. 68-75
  • Davis, P.J., Zhou, M., Davis, F.B., Lansing, L., Mousa, S.A., Lin, H.Y., Mini-review: Cell surface receptor for thyroid hormone and nongenomic regulation of ion fluxes in excitable cells (2010) Physiol. Behav, 99 (2), pp. 237-239
  • Bergh, J.J., Lin, H.Y., Lansing, L., Mohamed, S.N., Davis, F.B., Mousa, S., Davis, P.J., Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen- activated protein kinase and induction of angiogenesis (2005) Endocrinology, 146 (7), pp. 2864-2871
  • Davis, P.J., Lin, H.Y., Mousa, S.A., Luidens, M.K., Hercbergs, A.A., Wehling, M., Davis, F.B., Overlapping nongenomic and genomic actions of thyroid hormone and steroids (2011) Steroids, 76 (9), pp. 829-833
  • Tang, H.Y., Lin, H.Y., Zhang, S., Davis, F.B., Davis, P.J., Thyroid hormone causes mitogen-activared protein kinase-dependent phosphorylation of the nuclear estrogen receptor (2004) Endocrinology, 145 (7), pp. 3265-3272
  • Lin, H.Y., Tang, H.Y., Shih, A., Keating, T., Cao, G., Davis, P.J., Davis, F.B., Thyroid hormone is a MAPK-dependent growth factor for thyroid cancer cells and is anti-apoptotic (2007) Steroids, 72 (2), pp. 180-187
  • Lin, H.Y., Sun, M., Tang, H.Y., Lin, C., Luidens, M.K., Mousa, S.A., Incerpi, S., Davis, P.J., LThyroxine vs. 3,5,3'-triiodo-L-thyronine and cell proliferation: Activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase (2009) Am. J. Physiol. Cell Physiol, 296 (5), pp. C980-C991
  • Meng, R., Tang, H.Y., Westfall, J., London, D., Cao, J.H., Mousa, S.A., Luidens, M., Lin, H.Y., Crosstalk between integrin αvβ3 and estrogen receptor-α is involved in thyroid hormone-induced proliferation in human lung carcinoma cells (2011) PLoS One, 6 (11)
  • Davis, P.J., Davis, F.B., Lin, H.Y., Mousa, S.A., Zhou, M., Luidens, M.K., Translational implications of nongenomic actions of thyroid hormone initiated at its integrin receptor (2009) Am. J. Physiol. Endocrinol. Metab, 297 (6), pp. E1238-E1246
  • Barreiro Arcos, M.L., Gorelik, G., Klecha, A., Genaro, A.M., Cremaschi, G.A., Thyroid hormones increase inducible nitric oxide synthase gene expression downstream from PKC-zeta in murine tumor T lymphocytes (2006) Am. J. Physiol. Cell Physiol, 291 (2), pp. C327-C336
  • Barreiro Arcos, M.L., Sterle, H.A., Paulazo, M.A., Valli, E., Klecha, A.J., Isse, B., Pellizas, C.G., Cremaschi, G.A., Cooperative nongenomic and genomic actions on thyroid hormone mediated-modulation of T cell proliferation involve up-regulation of thyroid hormone receptor and inducible nitric oxide synthase expression (2011) J. Cell Physiol, 226 (12), pp. 3208-3218
  • Cayrol, F., Díaz Flaqué, M.C., Fernando, T., Yang, S.N., Sterle, H.A., Bolontrade, M., Amorós, M., Cremaschi, G.A., Integrin αVβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells (2014) Blood, , in press
  • Barreiro Arcos, M.L., Sterle, H.A., Vercelli, C., Valli, E., Cayrol, M.F., Klecha, A.J., Paulazo, M.A., Cremaschi, G.A., Induction of apoptosis in T lymphoma cells by long-term treatment with thyroxine involves PKCζ nitration by nitric oxide synthase (2013) Apoptosis, 18 (11), pp. 1376-1390
  • Neri, A., Marmiroli, S., Tassone, P., Lombardi, L., Nobili, L., Verdelli, D., Civallero, M., Sacchi, S., The oral protein-kinase C beta inhibitor enzastaurin (LY317615) suppresses signalling through the AKT pathway, inhibits proliferation and induces apoptosis in multiple myeloma cell lines (2008) Leuk. Lymphoma, 49 (7), pp. 1374-1383
  • Gibbs, P.E., Miralem, T., Lerner-Marmarosh, N., Tudor, C., Maines, M.D., Formation of ternary complex of human biliverdin reductase-protein kinase Cδ-ERK2 protein is essential for ERK2- mediated activation of Elk1 protein, nuclear factor-κB, and inducible nitric-oxidase synthase (iNOS) (2012) J. Biol. Chem, 287 (2), pp. 1066-1079
  • Sterle, H.A., Valli, E., Cayrol, F., Paulazo, M.A., Martinel Lamas, D.J., Diaz Flaqué, M.C., Klecha, A.J., Barreiro Arcos, M.L., Thyroid status modulates T lymphoma growth via cell cycle regulatory proteins and angiogenesis (2014) J. Endocrinol, 222 (2), pp. 243-255
  • Barrera-Hernandez, G., Park, K.S., Dace, A., Zhan, Q., Cheng, S.Y., Thyroid hormone-induced cell proliferation in GC cells is mediated by changes in G1 cyclin/cyclin-dependent kinase levels and activity (1999) Endocrinology, 140 (11), pp. 5267-5274
  • Ledda-Columbano, G.M., Molotzu, F., Pibiri, M., Cossu, C., Perra, A., Columbano, A., Thyroid hormone induces cyclin D1 nuclear translocation and DNA synthesis in adult rat cardiomyocytes (2006) FASEB J, 20 (1), pp. 87-94
  • Verga Falzacappa, C., Panacchia, L., Bucci, B., Stigliano, A., Cavallo, M.G., Brunetti, E., Toscano, V., Misiti, S., 3,5,3'- triiodothyronine (T3) is a survival factor for pancreatic beta-cells undergoing apoptosis (2006) J. Cell Physiol, 206 (2), pp. 309-321
  • Zhang, B., Zhang, A., Zhou, X., Webb, P., He, W., Xia, X., Thyroid hormone analogue stimulates keratinocyte proliferation but inhibits cell differentiation in epidermis (2012) Int. J. Immunopathol. Pharmacol, 25 (4), pp. 859-869
  • Mousa, S.A., Lin, H.Y., Tang, H.Y., Hercbergs, A., Luidens, M.K., Davis, P.J., Modulation of angiogenesis by thyroid hormone and hormone analogues: Implications for cancer management (2014) Angiogenesis, 17 (3), pp. 463-469
  • Glinskii, A.B., Glinsky, G.V., Lin, H.Y., Tang, H.Y., Sun, M., Davis, F.B., Luidens, M.K., Davis, P.J., Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac) (2009) Cell Cycle, 8 (21), pp. 3562-3570
  • Davis, P.J., Davis, F.B., Mousa, S.A., Luidens, M.K., Lin, H.Y., Membrane receptor for thyroid hormone: Physiologic and pharmacologic implications (2011) Annu. Rev. Pharmacol. Toxicol, 51, pp. 99-115
  • Luidens, M.K., Mousa, S.A., Davis, F.B., Lin, H.Y., Davis, P.J., Thyroid hormone and angiogenesis (2010) Vascul. Pharmacol, 52 (3-4), pp. 142-145
  • Ness, R.B., Grisso, J.A., Cottreau, C., Klapper, J., Vergona, R., Wheeler, J.E., Morgan, M., Schlesselman, J.J., Factors related to inflammation of the ovarian epithelium and risk of ovarian cancer (2000) Epidemiology, 11 (2), pp. 111-117
  • Ko, A.H., Wang, F., Holly, E.A., Pancreatic cancer and medical history in a population-based case-control study in the San Francisco Bay Area, California (2007) Cancer Causes Control, 18 (8), pp. 809-819
  • Moeller, L.C., Führer, D., Thyroid hormone, thyroid hormone receptors and cancer: A clinical perspective (2013) Endocr. Relat. Cancer, 20 (2), pp. R19-R29
  • Toms, S.A., Hercbergs, A., Liu, J., Kondo, S., Haqqi, T., Casey, G., Iwasaki, K., Barna, B.P., Antagonist effect of insulin- like growth factor I on protein kinase inhibitor-mediated apoptosis in human glioblastoma cells in association with bcl-2 and bcl-xL (1998) J. Neurosurg, 88 (5), pp. 884-889
  • Cristofanilli, M., Yamamura, Y., Kau, S.W., Bevers, T., Strom, S., Patangan, M., Hsu, L., Hortobagyi, G.N., Thyroid hormone and breast carcinoma. Primary hypothyroidism is associated with a reduced incidence of primary breast carcinoma (2005) Cancer, 103 (6), pp. 1122-1128
  • Hercbergs, A., Spontaneous remission of cancer--a thyroid hormone dependent phenomenon? (1999) Anticancer Res, 19 (6 A), pp. 4839-4844
  • Reddy, A., Dash, C., Leerapun, A., Mettler, T.A., Stadheim, L.M., Lazaridis, K.N., Roberts, R.O., Roberts, L.R., Hypothyroidism: A possible risk factor for liver cancer in patients with no known underlying cause of liver disease (2007) Clin. Gastroenterol Hepatol, 5 (1), pp. 118-123
  • Kuijpens, J.L., Nyklíctek, I., Louwman, M.W., Weetman, T.A., Pop, V.J., Coebergh, J.W., Hypothyroidism might be related to breast cancer in post-menopausal women (2005) Thyroid, 15 (11), pp. 1253-1259
  • Barreiro Arcos, M.L., Klecha, A.J., Genaro, A.M., Cremaschi, G.A., Immune System Modulation by Thyroid Axis Includes Direct Genomic and Nongenomic Actions of Thyroid Hormones on Immune Cells (2010) Immun., Endoc. & Metab. Agents in Med. Chem, 10, pp. 1-10
  • Sánchez-Beato, M., Sánchez-Aguilera, A., Piris, M.A., Cell cycle deregulation in B-cell lymphomas (2003) Blood, 101, pp. 1220-1235
  • Martínez-Iglesias, O., García-Silva, S., Regadera, J., Aranda, A., Hypothyroidism enhances tumor invasiveness and metastasis development (2009) PLoS One, 4 (7)
  • Zukerberg, L.R., Yang, W.I., Arnold, A., Harris, N.L., Cyclin D1 expression in non-Hodgkin's lymphomas. Detection by immunohistochemistry (1995) Am. J. Clin. Pathol, 103, pp. 756-760
  • Kanavaros, P., Bai, M., Stefanaki, K., Poussias, G., Rontogianni, D., Zioga, E., Gorgoulis, V., Agnantis, N.J., Immunohistochemical expression of the p53, mdm2, p21/Waf-1, Rb, p16, Ki67, cyclin D1, cyclin A and cyclin B1 proteins and apoptotic index in T-cell lymphomas (2001) Histol. Histopathol, 16, pp. 377-386
  • Mao, X., Orchard, G., Vonderheid, E.C., Novell, P.C., Bagot, M., Bensussan, A., Russell-Jones, R., Whittaker, S.J., Heterogeneous abnormalities of CCND1 and RB1 in primary cutaneous T-Cell lymphomas suggesting impaired cell cycle control in disease pathogenesis (2006) J. Invest. Dermatol, 126, pp. 1388-1395
  • Doglioni, C., Chiarelli, C., Macro, E., Dei Tos, A.P., Meggiolaro, E., Dalla Palma, P., Barbareschi, M., Cyclin D3 expression in normal, reactive and neoplastic tissues (1998) J. Pathol, 185 (2), pp. 159-166
  • Møller, M.B., Nielsen, O., Pedersen, N.T., Cyclin D3 expression in non-Hodgkin lymphoma. Correlation with other cell cycle regulators and clinical features (2001) Am. J. Clin. Pathol, 115 (3), pp. 404-412
  • Opavsky, R., Wang, S.H., Trikha, P., Raval, A., Huang, Y., Wu, Y.Z., Rodríguez, B., Plass, C., CpG island methylation in a mouse model of lymphoma is driven by the genetic configuration of tumor cells (2007) PLoS Genet, 3, pp. 1757-1769
  • Pérez de Castro, I.P., Malumbres, M., Santos, J., Pellicer, A., Fernández-Piqueras, J., Cooperative alterations of Rb pathway regulators in mouse primary T cell lymphomas (1999) Carcinogenesis, 20, pp. 1675-1682
  • Møller, M.B., Nielsen, O., Pedersen, N.T., Frequent alteration of MDM2 and p53 in the molecular progression of recurring non- Hodgkin's lymphoma (2002) Histopathology, 41 (4), pp. 322-330
  • Verschuren, E.W., Hodgson, J.G., Gray, J.W., Kogan, S., Jones, N., Evan, G.I., The role of p53 in suppression of KSHV cyclininduced lymphomagenesis (2004) Cancer Res, 64 (2), pp. 581-589
  • Karsunky, H., Guisen, C., Schmidt, T., Haas, K., Zevnik, B., Gau, E., Möröy, T., Oncogenic potential of cyclin E in T-cell lymphomagenesis in transgenic mice: Evidence for cooperation between cyclin E and Ras but not Myc (1999) Oncogene, 18 (54), pp. 7816-7824
  • Martins, C.P., Berns, A., Loss of p27(Kip1) but not p21(Cip1) decreases survival and synergizes with MYC in murine lymphomagenesis (2002) EMBO J, 21, pp. 3739-3748
  • Kang-Decker, N., Tong, C., Boussouar, F., Baker, D.J., Xu, W., Leontovich, A.A., Taylor, W.R., van Deursen, J.M., Loss of CBP causes T cell lymphomagenesis in synergy with p27Kip1 insufficiency (2004) Cancer Cell, 5 (2), pp. 177-189
  • Alisi, A., Demori, I., Spagnuolo, S., Pierantozzi, E., Fugassa, E., Leoni, S., Thyroid status affects rat liver regeneration after partial hepatectomy by regulating cell cycle and apoptosis (2005) Cell. Physiol. Biochem, 15 (1-4), pp. 69-76
  • Zhang, L., Cooper-Kuhn, C.M., Nannmark, U., Blomgren, K., Kuhn, H.G., Stimulatory effects of thyroid hormone on brain angiogenesis in vivo and in vitro (2010) J. Cereb. Blood Flow Metab, 30 (2), pp. 323-335
  • Otto, T., Fandrey, J., Thyroid hormone induces hypoxia-inducible factor 1alpha gene expression through thyroid hormone receptor beta/retinoid x receptor alpha-dependent activation of hepatic leukemia factor (2008) Endocrinology, 149 (5), pp. 2241-2250
  • Davis, F.B., Mousa, S.A., O'Connor, L., Mohamed, S., Lin, H.Y., Cao, H.J., Davis, P.J., Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface (2004) Circ. Res, 94 (11), pp. 1500-1506
  • Pinto, M., Soares, P., Ribatti, D., Thyroid hormone as a regulator of tumor induced angiogenesis (2011) Cancer Lett, 301 (2), pp. 119-126


---------- APA ----------
Arcos, M.L.B., Sterle, H., Cayrol, F., Flaqué, M.C.D., Valli, E., Paulazo, M.A., Klecha, A.J.,..., Cremaschi, G.A. (2015) . Classical and non-classical thyroid hormone intracellular pathways involved in T lymphoma growth. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 15(1), 37-42.
Recuperado de [ ]
---------- CHICAGO ----------
Arcos, M.L.B., Sterle, H., Cayrol, F., Flaqué, M.C.D., Valli, E., Paulazo, M.A., et al. "Classical and non-classical thyroid hormone intracellular pathways involved in T lymphoma growth" . Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry 15, no. 1 (2015) : 37-42.
Recuperado de [ ]
---------- MLA ----------
Arcos, M.L.B., Sterle, H., Cayrol, F., Flaqué, M.C.D., Valli, E., Paulazo, M.A., et al. "Classical and non-classical thyroid hormone intracellular pathways involved in T lymphoma growth" . Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, vol. 15, no. 1, 2015, pp. 37-42.
Recuperado de [ ]
---------- VANCOUVER ----------
Arcos, M.L.B., Sterle, H., Cayrol, F., Flaqué, M.C.D., Valli, E., Paulazo, M.A., et al. Classical and non-classical thyroid hormone intracellular pathways involved in T lymphoma growth. Immunol. Endocr. Metab. Agents Med. Chem. 2015;15(1):37-42.
Available from: [ ]