Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Herein, we report the use of cobalt and iron corrole complexes as catalysts of H2O reduction to generate H2. Electro- and photocatalysis has been used in the case of dissolved corroles for water reduction with inspiring results. Carbon nanotubes doped with corroles were used as photo-electrochemical catalysts, with very low overpotential values and increased hydrogen production; incredibly high turnover numbers and turnover frequencies of approximately 107 and 105, respectively, were achieved. Through this last process, we were able to obtain 1 mmol of H2 by using minuscule amounts of catalyst, in the order of picograms. The reactions can be performed in water, without the need for organic solvents. Remarkably, the photo-electrochemical catalytic efficiency was increased by five orders of magnitude if the molecular catalysts were adsorbed onto carbon nanotubes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:Iron and Cobalt Corroles in Solution and on Carbon Nanotubes as Molecular Photocatalysts for Hydrogen Production by Water Reduction
Autor:Morales Vásquez, M.A.; Hamer, M.; Neuman, N.I.; Tesio, A.Y.; Hunt, A.; Bogo, H.; Calvo, E.J.; Doctorovich, F.
Filiación:INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, C1428EHA, Argentina
Instituto de Nanosistemas, Universidad Nacional de San Martin, CONICET, Buenos Aires, B1650, Argentina
Departamento de Física, FBCB-UNL, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Ruta N 168 S/N, Santa Fe, S3000ZAA, Argentina
Palabras clave:electrocatalysis; hydrogen; metallocorroles; photocatalysis; water splitting; Carbon; Carbon nanotubes; Catalysis; Catalysts; Cobalt; Cobalt compounds; Electrocatalysis; Hydrogen; Iron compounds; Nanotubes; Photocatalysis; Polypyrroles; Reduction; Yarn; Catalytic efficiencies; Electrochemical catalyst; Iron corrole complexes; Metallocorroles; Molecular catalysts; Orders of magnitude; Turnover frequency; Water splitting; Hydrogen production
Año:2017
Volumen:9
Número:16
Página de inicio:3259
Página de fin:3268
DOI: http://dx.doi.org/10.1002/cctc.201700349
Título revista:ChemCatChem
Título revista abreviado:ChemCatChem
ISSN:18673880
CODEN:CHEMK
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18673880_v9_n16_p3259_MoralesVasquez

Referencias:

  • Peuntinger, K., Lazarides, T., Dafnomili, D., Charalambidis, G., Landrou, G., Kahnt, A., Sabatini, R.P., Guldi, D.M., (2013) J. Phys. Chem. C, 117, pp. 1647-1655
  • Liu, H.-Y., Mahmood, M.H., Qiu, S.-X.S., Chang, C.K., (2013) Coord. Chem. Rev., 257, pp. 1306-1333
  • Gryko, D.T., Fox, J.P., Goldberg, D.P., (2004) J. Porphyrins Phthalocyanines, 8, pp. 1091-1105
  • Vogel, E., Will, S., Tilling, A.S., Neumann, L., Lex, J., Bill, E., Trautwein, A.X., Wieghardt, K., (1994) Angew. Chem. Int. Ed. Engl., 33, pp. 731-735
  • (1994) Angew. Chem., 106, pp. 771-775
  • Will, S., Lex, J., Vogel, E., Schmickler, H., Gisselbrecht, J.-P., Haubtmann, C., Bernard, M., Gorss, M., (1997) Angew. Chem. Int. Ed. Engl., 36, pp. 357-361
  • (1997) Angew. Chem., 109, pp. 367-371
  • Gross, Z., (2001) J. Biol. Inorg. Chem., 6, pp. 733-738
  • Mahammed, A., Weaver, J.J., Gray, H.B., Abdelas, M., Gross, Z., (2003) Tetrahedron Lett., 44, pp. 2077-2079
  • Park, H., Vecitis, C.D., Choi, W., Weres, O., Hoffmann, M.R., (2008) J. Phys. Chem. C, 112, pp. 885-889
  • Shi, L., Liu, H.-Y., Shen, H., Hu, J., Zhang, G.-L., Wang, H., Ji, L.-N., Jiang, H.-F., (2009) J. Porphyrins Phthalocyanines, 13, pp. 1221-1226
  • Aviv-Harel, I., Gross, Z., (2011) Coord. Chem. Rev., 255, pp. 717-736
  • Gross, Z., Galili, N., Saltsman, I., (1999) Angew. Chem. Int. Ed., 38, pp. 1427-1429
  • (1999) Angew. Chem., 111, pp. 1530-1533
  • Gross, Z., Galili, N., Simkhovich, L., Saltsman, I., Botoshansky, M., Bläser, D., Boese, R., Goldberg, I., (1999) Org. Lett., 1, pp. 599-602
  • Paolesse, R., Mini, S., Sagone, F., Boschi, T., Jaquinod, L., Nurco, D.J., Smith, K.M., (1999) Chem. Commun., pp. 1307-1308
  • Gryko, D.T., (2000) Chem. Commun., pp. 2243-2244
  • Gryko, D.T., Jadach, K., (2001) J. Org. Chem., 66, pp. 4267-4275
  • Kellett, R.M., Spiro, T.G., (1985) Inorg. Chem., 24, pp. 2373-2377
  • Morales Vásquez, M.A., Suárez, S.A., Doctorovich, F., (2015) Mater. Chem. Phys., 159, pp. 159-166
  • Hocking, R.K., George, S.D., Gross, Z., Walker, F.A., Hodgson, K.O., Hedman, B., Solomon, E.I., (2009) Inorg. Chem., 48, pp. 1678-1688
  • Toma, F.M., Sartorel, A., Iurlo, M., Carraro, M., Parisse, P., Maccato, C., Rapino, S., Bonchio, M., (2010) Nat. Chem., 2, pp. 826-831
  • Li, F., Li, L., Tong, L., Daniel, Q., Göthelid, M., Sun, L., (2014) Chem. Commun., 50, pp. 13948-13951
  • Li, H., Zhou, B., Lin, Y., Gu, L., Wang, W., Fernando, K.A.S., Kumar, S., Sun, Y.-P., (2004) J. Am. Chem. Soc., 126, pp. 1014-1015
  • Bottari, G., de la Torre, G., Torres, T., (2015) Acc. Chem. Res., 48, pp. 900-910
  • D'Souza, F., Chitta, R., Sandanayaka, A.S.D., Subbaiyan, N.K., D'Souza, L., Araki, Y., Ito, O., (2007) J. Am. Chem. Soc., 129, pp. 15865-15871
  • Guldi, D.M., Rahman, G.M.A., Zerbetto, F., Prato, M., (2005) Acc. Chem. Res., 38, pp. 871-878
  • Tachibana, Y., Vayssieres, L., Durrant, J.R., (2012) Nat. Photonics, 6, pp. 511-518
  • Cheng, Y., Memar, A., Saunders, M., Pan, J., Liu, C., Gale, J.D., Demichelis, R., Jiang, S.P., (2016) J. Mater. Chem. A, 4, pp. 2473-2483
  • Hijazi, I., Bourgeteau, T., Cornut, R., Morozan, A., Filoramo, A., Leroy, J., Derycke, V., Campidelli, S., (2014) J. Am. Chem. Soc., 136, pp. 6348-6354
  • Zhong, Q., Diev, V.V., Roberts, S.T., Antunez, P.D., Brutchey, R.L., Bradforth, S.E., Thompson, M.E., (2013) ACS Nano, 7, pp. 3466-3475
  • Choi, A., Jeong, H., Kim, S., Jo, S., Jeon, S., (2008) Electrochim. Acta, 53, pp. 2579-2584
  • Tu, W., Lei, J., Ju, H., (2008) Electrochem. Commun., 10, pp. 766-769
  • Li, F., Zhang, B., Li, X., Jiang, Y., Chen, L., Li, Y., Sun, L., (2011) Angew. Chem. Int. Ed., 51, pp. 12276-12279
  • (2011) Angew. Chem., 123, pp. 12484-12487
  • Dhanasekaran, T., Grodkowski, J., Neta, P., Hambright, P., Fujita, E., (1999) J. Phys. Chem. A, 103, pp. 7742-7748
  • Grodkowski, J., Neta, P., Fujita, E., Mahammed, A., Simkhovich, L., Gross, Z., (2002) J. Phys. Chem. A, 106, pp. 4772-4778
  • Ramdhanie, B., Telser, J., Caneschi, A., Zakharov, L.N., Rheingold, A.L., Goldberg, D.P., (2004) J. Am. Chem. Soc., 126, pp. 2515-2525
  • Matsuoka, S., Kohzuki, T., Pac, C., Ishida, A., Takamuku, S., Kusaba, M., Nakashima, N., Yanagida, S., (1992) J. Phys. Chem., 96, pp. 4437-4442
  • Behar, D., Dhanasekaran, T., Neta, P., Hosten, C.M., Ejeh, D., Hambright, P., Fujita, E., (1998) J. Phys. Chem. A, 102, pp. 2870-2877
  • Ou, Z., Lü, A., Meng, D., Huang, S., Fang, Y., Lu, G., Kadish, K.M., (2012) Inorg. Chem., 51, pp. 8890-8896
  • Hendrickson, D.N., Kinnaird, M.G., Suslick, K.S., (1987) J. Am. Chem. Soc., 109, pp. 1243-1244
  • Mondal, B., Sengupta, K., Rana, A., Mahammed, A., Botoshansky, M., Dey, S.G., Gross, Z., Dey, A., (2013) Inorg. Chem., 52, pp. 3381-3387
  • Wang, Z., Lei, H., Cao, R., Zhang, M., (2015) Electrochim. Acta, 171, pp. 81-88
  • Wang, J., Chen, Y., Blau, W.J., (2009) J. Mater. Chem., 19, p. 7425
  • Baskaran, D., Mays, J.W., Zhang, X.P., Bratcher, M.S., (2005) J. Am. Chem. Soc., 127, pp. 6916-6917
  • Sáfar, G.A.M., Ribeiro, H.B., Malard, L.M., Plentz, F.O., Fantini, C., Santos, A.P., de Freitas-Silva, G., Idemori, Y.M., (2008) Chem. Phys. Lett., 462, pp. 109-111
  • Magadur, G., Lauret, J.-S., Alain-Rizzo, V., Voisin, C., Roussignol, P., Deleporte, E., Delaire, J.A., (2008) ChemPhysChem, 9, pp. 1250-1253
  • Rance, G.A., Marsh, D.H., Nicholas, R.J., Khlobystov, A.N., (2010) Chem. Phys. Lett., 493, pp. 19-23
  • Yu, J., Grossiord, N., Koning, C.E., Loos, J., (2007) Carbon, 45, pp. 618-623
  • Ryabenko, A.G., Dorofeeva, T.V., Zvereva, G.I., (2004) Carbon, 42, pp. 1523-1535
  • Huang, P., Xu, C., Lin, J., Wang, C., Wang, X., Zhang, C., Zhou, X., Cui, D., (2011) Theranostics, 1, pp. 240-250
  • Steene, E., Wondimagegn, T., Ghosh, A., (2002) J. Inorg. Biochem., 88, pp. 113-118
  • Lewandowska, K., Barszcz, B., Wolak, J., Graja, A., Grzybowski, M., Gryko, D.T., (2013) Dyes Pigm., 96, pp. 249-255
  • Wasbotten, I.H., Wondimagegn, T., Ghosh, A., (2002) J. Am. Chem. Soc., 124, pp. 8104-8116
  • Odedairo, T., Ma, J., Gu, Y., Chen, J., Zhao, X.S., Zhu, Z., (2014) J. Mater. Chem. A, 2, pp. 1418-1428
  • Pócsik, I., Hundhausen, M., Koós, M., Ley, L., (1998) J. Non-Cryst. Solids, 227-230, pp. 1083-1086
  • Bokobza, L., (2012) Express Polym. Lett., 6, pp. 601-608
  • Karachevtsev, V.A., Zarudnev, E.S., Stepanian, S.G., Glamazda, A.Y., Karachevtsev, M.V., Adamowicz, L., (2010) J. Phys. Chem. C, 114, pp. 16215-16222
  • Saleh, T.A., Gupta, V.K., (2011) J. Colloid Interface Sci., 362, pp. 337-344
  • Riggs, J.E., Guo, Z., Carroll, D.L., Sun, Y.-P., (2000) J. Am. Chem. Soc., 122, pp. 5879-5880
  • Guldi, D.M., Taieb, H., Rahman, G.M.A., Tagmatarchis, N., Prato, M., (2005) Adv. Mater., 17, pp. 871-875
  • D'Souza, F., Das, S.K., Zandler, M.E., Sandanayaka, A.S.D., Ito, O., (2011) J. Am. Chem. Soc., 133, pp. 19922-19930
  • Dempsey, J.L., Brunschwig, B.S., Winkler, J.R., Gray, H.B., (2009) Acc. Chem. Res., 42, pp. 1995-2004
  • Losse, S., Vos, J.G., Rau, S., (2010) Coord. Chem. Rev., 254, pp. 2492-2504
  • Sun, Y., Bigi, J.P., Piro, N.A., Tang, M.L., Long, J.R., Chang, C.J., (2011) J. Am. Chem. Soc., 133, pp. 9212-9215
  • Karunadasa, H.I., Montalvo, E., Sun, Y., Majda, M., Long, J.R., Chang, C.J., (2012) Science, 335, pp. 698-702
  • Karunadasa, H.I., Chang, C.J., Long, J.R., (2010) Nature, 464, pp. 1329-1333
  • Paolesse, R., Nardis, S., Sagone, F., Khoury, R.G., (2001) J. Org. Chem., 66, pp. 550-556
  • Wojaczyński, J., Duszak, M., Latos-Grażyński, L., (2013) Tetrahedron, 69, pp. 10445-10449
  • Barbe, J.-M., Canard, G., Brandes, S., Jerome, F., Dubois, G., Guilard, R., (2004) Dalton Trans., pp. 1208-1214
  • Walker, F.A., Licoccia, S., Paolesse, R., (2006) J. Inorg. Biochem., 100, pp. 810-837

Citas:

---------- APA ----------
Morales Vásquez, M.A., Hamer, M., Neuman, N.I., Tesio, A.Y., Hunt, A., Bogo, H., Calvo, E.J.,..., Doctorovich, F. (2017) . Iron and Cobalt Corroles in Solution and on Carbon Nanotubes as Molecular Photocatalysts for Hydrogen Production by Water Reduction. ChemCatChem, 9(16), 3259-3268.
http://dx.doi.org/10.1002/cctc.201700349
---------- CHICAGO ----------
Morales Vásquez, M.A., Hamer, M., Neuman, N.I., Tesio, A.Y., Hunt, A., Bogo, H., et al. "Iron and Cobalt Corroles in Solution and on Carbon Nanotubes as Molecular Photocatalysts for Hydrogen Production by Water Reduction" . ChemCatChem 9, no. 16 (2017) : 3259-3268.
http://dx.doi.org/10.1002/cctc.201700349
---------- MLA ----------
Morales Vásquez, M.A., Hamer, M., Neuman, N.I., Tesio, A.Y., Hunt, A., Bogo, H., et al. "Iron and Cobalt Corroles in Solution and on Carbon Nanotubes as Molecular Photocatalysts for Hydrogen Production by Water Reduction" . ChemCatChem, vol. 9, no. 16, 2017, pp. 3259-3268.
http://dx.doi.org/10.1002/cctc.201700349
---------- VANCOUVER ----------
Morales Vásquez, M.A., Hamer, M., Neuman, N.I., Tesio, A.Y., Hunt, A., Bogo, H., et al. Iron and Cobalt Corroles in Solution and on Carbon Nanotubes as Molecular Photocatalysts for Hydrogen Production by Water Reduction. ChemCatChem. 2017;9(16):3259-3268.
http://dx.doi.org/10.1002/cctc.201700349