Artículo

Zeida, A.; Guardia, C.M.; Lichtig, P.; Perissinotti, L.L.; Defelipe, L.A.; Turjanski, A.; Radi, R.; Trujillo, M.; Estrin, D.A. "Thiol redox biochemistry: Insights from computer simulations" (2014) Biophysical Reviews. 6(1):27-46
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Thiol redox chemical reactions play a key role in a variety of physiological processes, mainly due to the presence of low-molecular-weight thiols and cysteine residues in proteins involved in catalysis and regulation. Specifically, the subtle sensitivity of thiol reactivity to the environment makes the use of simulation techniques extremely valuable for obtaining microscopic insights. In this work we review the application of classical and quantum-mechanical atomistic simulation tools to the investigation of selected relevant issues in thiol redox biochemistry, such as investigations on (1) the protonation state of cysteine in protein, (2) two-electron oxidation of thiols by hydroperoxides, chloramines, and hypochlorous acid, (3) mechanistic and kinetics aspects of the de novo formation of disulfide bonds and thiol-disulfide exchange, (4) formation of sulfenamides, (5) formation of nitrosothiols and transnitrosation reactions, and (6) one-electron oxidation pathways. © 2014 International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Thiol redox biochemistry: Insights from computer simulations
Autor:Zeida, A.; Guardia, C.M.; Lichtig, P.; Perissinotti, L.L.; Defelipe, L.A.; Turjanski, A.; Radi, R.; Trujillo, M.; Estrin, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, AB, T2N 2N4, Canada
Departamento de Química Biológica and INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Universidad de la República, Av. Gral Flores 2125, CP 11800, Montevideo, Uruguay
Palabras clave:Computer simulations; Oxidation; Redox homeostasis; Thiols; chloramine derivative; cysteine; hydroperoxide derivative; hypochlorite; peroxiredoxin; peroxynitrite; protein; reactive oxygen metabolite; s nitrosothiol; sulfenamide derivative; thiol; chemical reaction; density functional theory; disulfide bond; molecular dynamics; molecular mechanics; nuclear magnetic resonance imaging; oxidation; oxidation reduction reaction; pKa; priority journal; quantum mechanics; reduction; review; simulation; thermodynamics; thiol redox chemical reaction; thiolation reaction; transnitrosation
Año:2014
Volumen:6
Número:1
Página de inicio:27
Página de fin:46
DOI: http://dx.doi.org/10.1007/s12551-013-0127-x
Título revista:Biophysical Reviews
Título revista abreviado:Biophys. Rev.
ISSN:18672450
CAS:cysteine, 4371-52-2, 52-89-1, 52-90-4; hypochlorite, 14380-61-1; peroxiredoxin, 207137-51-7; protein, 67254-75-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18672450_v6_n1_p27_Zeida

Referencias:

  • Abkevich, V.I., Shakhnovich, E.I., What can disulfide bonds tell us about protein energetics, function and folding: simulations and bioninformatics analysis (2000) J Mol Biol, 300, pp. 975-985
  • Ackermann, K.R., Koster, J., Schlücker, S., Conformations and vibrational properties of disulfide bridges: Potential energy distribution in the model system diethyl disulfide (2009) Chem Phys, 355, pp. 81-84
  • Alexov, E., Mehler, E.L., Baker, N., Baptista, A.M., Huang, Y., Milletti, F., Nielsen, J.E., Word, J.M., Progress in the prediction of pKa values in proteins (2011) Proteins, 79, pp. 3260-3275
  • Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Protein tyrosine phosphatases in the human genome (2004) Cell, 117, pp. 699-711
  • Anderson, B.D., Luo, D., Application of an exact mathematical model and the steady-state approximation to the kinetics of the reaction of cysteine and hydrogen peroxide in aqueous solution: a reply to the Ashby and Nagy commentary (2006) J Pharm Sci, 95, pp. 19-24
  • Angelo, M., Singel, D.J., Stamler, J.S., An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate (2006) Proc Natl Acad Sci USA, 103, pp. 8366-8371
  • Arulsamy, N., Bohle, D.S., Butt, J.A., Irvine, G.J., Interrelationships between conformational dynamics and the redox chemistry of S-nitrosothiols (1999) J Am Chem Soc, 121, pp. 7115-7123
  • Ashby, M.T., Nagy, P., On the kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution (2006) J Pharm Sci, 95, pp. 15-18
  • Ashby, M.T., Nagy, P., Revisiting a proposed kinetic model for the reaction of cysteine and hydrogen peroxide via cysteine sulfenic acid (2006) Int J Chem Kinet, 39, pp. 32-38
  • Bach, R.D., Dmitrenko, O., Thorpe, C., Mechanism of thiolate-disulfide interchange reactions in biochemistry (2008) J Org Chem, 73, pp. 12-21
  • Bachrach, S.M., Hayes, J.M., Dao, T., Mynar, J.L., Density functional theory gas- and solution-phase study of nucleophilic substitution at di- and trisulfides (2002) Theor Chem Acc, 107, pp. 266-271
  • Bachrach, S.M., Mulhearn, D.C., Nucleophilic substitution at sulfur: SN2 or addition-elimination? (1996) J Phys Chem, 100, pp. 3535-3540
  • Bachrach, S.M., Pereverzev, A., Competing elimination and substitution reactions of simple acyclic disulfides (2005) Org Biomol Chem, 3, pp. 2095-2101
  • Baciu, C., Gauld, J.W., An assessment of theoretical methods for the calculation of accurate structures and SN bond dissociation energies of S-nitrosothiols (RSNOs) (2003) J Phys Chem A, 107, pp. 9946-9952
  • Barford, D., The role of cysteine residues as redox-sensitive regulatory switches (2004) Curr Opin Struct Biol, 14, pp. 679-686
  • Barnett, D.J., McAnimly, J., Williams, D.L.H., Transnitrosation between nitrosothiols and thiols (1994) J Chem Soc Perkin Trans, 2, pp. 1131-1133
  • Barnett, D.J., Rios, A., Williams, D.L.H., NO- group transfer (transnitrosation) between S-nitrosothiols and thiols II (1995) J Chem Soc Perkin Trans, 2, pp. 1279-1282
  • Bartberger, M.D., Houk, K.N., Powell, S.C., Mannion, J.D., Theory, spectroscopy, and crystallographic analysis of S-nitrosothiols: conformational distribution dictates spectroscopic behavior (2000) J Am Chem Soc, 122, pp. 5889-5890
  • Bartberger, M.D., Mannion, J.D., Powel, S.C., Stamler, J.S., SN dissociation energies of S-nitrosothiols: on the origins of nitrosothiol decomposition rates (2001) J Am Chem Soc, 123, pp. 8868-8869
  • Barton, J.P., Packer, J.E., Sims, R.J., Kinetics of the reaction of hydrogen peroxide with cysteine and cysteamine (1973) J. Chem. Soc., Perkin Trans, 2, pp. 1547-1549
  • Bas, D.C., Rogers, D.M., Jensen, J.H., Very fast prediction and rationalization of pKa values for protein-ligand complexes (2008) Proteins, 73, pp. 765-783
  • Bashford, D., Karplus, M., pKa's of Ionizable groups in proteins: atomic detail from a continuum electrostatic model (1990) Biochemistry, 29, pp. 10219-10225
  • Basu, S., Keszler, A., Azarova, N.A., Nwanze, N., Perlegas, A., Shiva, S., Broniowska, K.A., Kim-Shapiro, D.B., A novel role for cytochrome c: efficient catalysis of S-nitrosothiol formation (2010) Free Radic Biol Med, 48, pp. 255-263
  • Bhattacharjee, S., Deterding, L.J., Jiang, J., Bonini, M.G., Tomer, K.B., Ramirez, D.C., Mason, R.P., Electron transfer between a tyrosyl radical and a cysteine residue in hemoproteins: spin trapping analysis (2007) J Am Chem Soc, 129, pp. 13493-13501
  • Bayse, C.A., Transition states for cysteine redox processes modeled by DFT and solvent-assisted proton exchange (2011) Org Biomol Chem, 9, pp. 4748-4751
  • Becker, A., Kabsch, W., X-ray structure of pyruvate formate-lyase in complex with pyruvate and CoA-How the enzyme uses the Cys-418 thiyl radical for pyruvate cleavage (2002) J Biol Chem, 277, pp. 40036-40042
  • Benassi, R., Fiandri, G.L., Taddei, F., A theoretical MO ab initio approach to the conformational properties and homolytic bond cleavage in aryl disulphides (1997) J Mol Struc-Theochem, 418, pp. 127-138
  • Bharadwaj, V.S., Dean, A.M., Maupin, C.M., Insights into the glycyl radical enzyme active site of benzylsuccinate synthase: a computational study (2013) J Am Chem Soc, 135, pp. 12279-12288
  • Boese, M., Mordvintcev, P., Vanin, A.F., Busse, R., Mulsch, A., S-nitrosation of serum albumin by dinitrosyl-iron complex (1995) J Biol Chem, 270, pp. 29244-29249
  • Boyd, R.J., Perkyns, J.S., Ramani, R., Conformations of simple disulfides and L-cystine (1983) Can J Chem, 61, pp. 1082-1085
  • Brandes, N., Schmitt, S., Jakob, U., Thiol-based redox switches in eukaryotic proteins (2009) Antiox Redox Signal, 11, pp. 997-1014
  • Bredt, D.S., Snyder, S.H., Nitric oxide: a physiologic messenger molecule (1993) Annu Rev Biochem, 63, pp. 175-195
  • Broniowska, K.A., Keszler, A., Basu, S., Kim-Shapiro, D.B., Hogg, N., Cytochrome c-mediated formation of S-nitrosothiol in cells (2012) Biochem J, 442, pp. 191-197
  • Bryan, N.S., Rassaf, T., Maloney, R.E., Rodriguez, C.M., Saijo, F., Rodriguez, J.R., Feelish, J.R., Cellular targets and mechanisms of nitros (yl) ation: an insight into their nature and kinetics in vivo (2004) Proc Natl Acad Sci USA, 101, pp. 4308-4313
  • Buckel, W., Bacterial methanogenesis proceeds by a radical mechanism (2013) Angew Chem Int Ed, 52, pp. 2-5
  • Buettner, G.R., The pecking order of free radicals and antioxidants: lipid peroxidation, a-tocopherol, and ascorbate (1993) Arch Biochem Biophys, 300, pp. 535-543
  • Buhrman, G., Parker, B., Sohn, J., Rudolph, J., Mattos, C., Structural mechanism of oxidative regulation of the phosphatase Cdc25B via an intramolecular disulfide bond (2005) Biochemistry, 44, pp. 5307-5316
  • Bulaj, G., Kortemme, T., Goldenberg, D.P., Ionization-reactivity relationships for cysteine thiols in polypeptides (1998) Biochemistry, 37, pp. 8965-8972
  • Canet-Avilés, R.M., Wilson, M., Miller, D.W., Ahmad, R., McLendon, C., The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization (2004) Proc Natl Acad Sci USA, 101, pp. 9103-9108
  • Canle López, M., Ramos, D.R., Santaballa, J.A., A DFT study on the microscopic ionization of cysteine in water (2005) Chem Phys Lett, 417, pp. 28-33
  • Cárdenas-Jirón, G.I., Cárdenas-Lailhacar, C., Toro-Labbé, A., Theoretical analysis of the internal rotation, molecular structures and electronic properties of the XSSX series of molecules (X = H, F, Cl) (1993) J Mol Struc-Theochem, 282, pp. 113-122
  • Cardey, B., Enescu, M., A computational study of thiolate and selenolate oxidation by hydrogen peroxide (2005) ChemPhysChem, 6, pp. 1175-1180
  • Cardey, B., Enescu, M., Selenocysteine versus cysteine reactivity: A theoretical study of their oxidation by hydrogen peroxide (2007) J Phys Chem A, 111, pp. 673-678
  • Cardey, B., Enescu, M., Cysteine oxidation by the superoxide radical: a theoretical study (2009) ChemPhysChem, 10, pp. 1642-1648
  • Cardey, B., Foley, S., Enescu, M., Mechanism of thiol oxidation by the superoxide radical (2007) J Phys Chem A, 111, pp. 13046-13052
  • Chu, J.W., Trout, B.L., On the mechanisms of oxidation of organic sulfides by H2O2 in aqueous solutions (2004) J Am Chem Soc, 126, pp. 900-908
  • Colebrook, L.D., Tarbell, D.S., Evidence for hydrogen bonding in thiols from NMR measurements (1961) Proc Natl Acad Sci USA, 47, pp. 993-996
  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (1995) J Am Chem Soc, 117, pp. 5179-5197
  • Crane, B.R., Arvai, A.S., Ghosh, D.K., Wu, C., Getzoff, E.D., Stuehr, D.J., Trainer, J.A., Structure of nitric oxide synthase oxygenase dimer with pterin and substrate (1998) Science, 279, pp. 2121-2126
  • Crespo, A., Marti, M.A., Estrin, D.A., Roitberg, A.E., Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase (2005) J Am Chem Soc, 127, pp. 6940-6941
  • Crespo, A., Marti, M.A., Roitberg, A.E., Amzel, M., Estrin, D.A., The catalytic mechanism of peptidylglycine a-hydroxylating monooxygenase investigated by computer simulation (2006) J Am Chem Soc, 128, pp. 12817-12828
  • Crespo, A., Scherlis, D.A., Martí, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., A DFT-based QM-MM approach designed for the treatment of large molecular systems: application to chorismate mutase (2003) J Phys Chem B, 107, pp. 13728-13736
  • Depuydt, M., Messens, J., Collet, J.F., How proteins form disulfide bonds (2011) Antioxid Redox Signal, 15, pp. 49-66
  • Dixon, D.A., Zeroka, D., Wendoloski, J.J., Wasserman, Z.R., The molecular structure of H2S2 and barriers to internal rotation (1985) J Phys Chem, 89, pp. 5334-5336
  • Dokainish, H.M., Gauld, J.W., A molecular dynamics and quantum mechanics/molecular mechanics study of the catalytic reductase mechanism of methionine sulfoxide reductase A: formation and reduction of a sulfenic acid (2013) Biochemistry, 52, pp. 1814-1827
  • Dror, R.O., Dirks, R.M., Grossman, J.P., Xu, H., Shaw, D.E., Biomolecular simulation: A computational microscope for molecular biology (2012) Annu Rev Biophys, 41, pp. 429-452
  • Dyson, H.J., Jeng, M.F., Tennant, L.L., Slaby, I., Lindell, M., Cui, D.S., Kuprin, S., Holmgren, A., Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57 (1997) Biochemistry, 36, pp. 2622-2636
  • Edwards, J.O., (1962) Peroxide Reaction Mechanisms, pp. 67-106. , 1st edn., J. O. Edwards (Ed.), New York: Interscience
  • Eiamphungporn, W., Soonsanga, S., Lee, J.-W., Helmann, J.D., Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro (2009) Nucleic Acids Res, 37, pp. 1174-1181
  • Engström, M., Vahtras, O., Ågren, H., MCSCF and DFT calculations of EPR parameters of sulfur centered radicals (2000) Chem Phys Lett, 328, pp. 483-491
  • Fava, A., Iliceto, A., Camera, E., Kinetics of the thiol-disulfide exchange (1957) J Am Chem Soc, 79, pp. 833-838
  • Fehér, K., Matthews, R.P., Kövér, K.E., Naidoo, K.J., Szilágyi, L., Conformational preferences in diglycosyl disulfides: NMR and molecular modeling studies (2011) Carbohydr Res, 346, pp. 2612-2621
  • Fernandes, P.A., Ramos, M.J., Theoretical insights into the mechanism for thiol/disulfide exchange (2004) Chem Eur J, 10, pp. 257-266
  • Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., Denicola, A., Factors affecting protein thiol reactivity and specificity in peroxide reduction (2011) Chem Res Toxicol, 24, pp. 434-450
  • Ferrer-Sueta, G., Radi, R., Chemical biology of peroxynitrite: kinetics, diffusion, and radicals (2009) ACS Chem Biol, 4, pp. 161-177
  • Fitch, C.A., García-Moreno, E.B., Structure-based pKa calculations using continuum electrostatics methods (2007) Curr Protoc Bioinf Chapter, p. 8. , Unit 8. 11. doi: 10. 1002/0471250953. bi0811s16
  • Flohe, L., Changing paradigms in thiology from antioxidant defense toward redox regulation (2010) Methods Enzymol, 473, pp. 1-39
  • Folkes, L.K., Trujillo, M., Bartesaghi, S., Radi, R., Wardman, P., Kinetics of reduction of tyrosine phenoxyl radicals by glutathione (2011) Arch Biochem Biophys, 506, pp. 242-249
  • Foloppe, N., Nilsson, L., Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants (2007) J Mol Biol, 372, pp. 798-816
  • Fomenko, D.E., Marino, S.M., Gladyshev, V.N., Functional diversity of cysteine residues in proteins and unique features of catalytic redox-active cysteines in thiol oxidoreductases (2008) Mol Cells, 26, pp. 228-235
  • Geronimo, I., Chéron, N., Fleurat-Lessard, P., Dumont, E., How does microhydration impact on structure, spectroscopy and formation of disulfide radical anions? An ab initio investigation on dimethyldisulfide (2009) Chem Phys Lett, 481, pp. 173-179
  • Gilbert, H.F., Molecular and cellular aspects of thiol-disulfide exchange (1990) Adv Enzymol Relat Areas Mol Biol, 63, pp. 69-172
  • Giles, N., Watts, A., Giles, G., Fry, F., Metal and redox modulation of cysteine protein function (2003) Chem Biol, 10, pp. 677-693
  • Goldman, R.K., Vlessis, A.A., Trunkey, D.D., Nitrosothiol quantification in human plasma (1998) Anal Biochem, 259, pp. 98-103
  • Goldstein, S., Czapski, G., The reaction of NO. with O2 .- and HO2 .: a pulse radiolysis study (1995) Free Radic Biol Med, 19, pp. 505-510
  • Goldstein, S., Czapski, G., Mechanism of the nitrosation of thiols and amines by oxygenated no solutions: the nature of the nitrosating intermediates (1996) J Am Chem Soc, 118, pp. 3419-3425
  • González Lebrero, M.C., Perissinotti, L.L., Estrin, D.A., Solvent effects on peroxynitrite structure and properties from QM/MM simulations (2005) J Phys Chem A, 109, pp. 9598-9604
  • Gow, A.J., Buerk, D.G., Ischiropoulos, H., A novel reaction mechanism for the formation of S-nitrosothiol in vivo (1997) J Biol Chem, 272, pp. 2841-2845
  • Gross, S.S., Wolin, M.S., Nitric oxide: pathophysiological mechanisms (1995) Annu Rev Physiol, 57, pp. 737-769
  • Grossi, L., Montevecchi, P.C., A kinetic study of S-nitrosothiol decomposition (2002) Chem Eur J, 8, pp. 380-387
  • Hall, A., Parsonage, D., Poole, L.B., Karplus, P.A., Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization (2010) J Mol Biol, 402, pp. 194-209
  • Hamelberg, D., Mongan, J., McCammon, J.A., Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules (2004) J Chem Phys, 120, pp. 11919-11929
  • Hayes, J.M., Bachrach, S.M., Effect of micro and bulk solvation on the mechanism of nucleophilic substitution at sulfur in disulfides (2003) J Phys Chem A, 107, pp. 7952-7961
  • Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., Stamler, J.S., Protein S-nitrosylation: purview and parameters (2005) Nature Rev Mol Cell Biol, 6, pp. 150-166
  • Heverly-Coulson, G.S., Boyd, R.J., Reduction of hydrogen peroxide by glutathione peroxidase mimics: reaction mechanism and energetics (2009) J Phys Chem A, 114, pp. 1996-2000
  • Hofstetter, D., Nauser, T., Koppenol, W.H., The glutathione thiyl radical does not react with nitrogen monoxide (2007) Biochem Biophys Res Commun, 360, pp. 146-148
  • Hogg, N., The kinetics of S-transnitrosation: a reversible second-order reaction (1999) Anal Biochem, 272, pp. 257-262
  • Hogg, N., Singh, R.J., Kalyanaraman, B., The role of glutathione in the transport and catabolism of nitric oxide (1996) FEBS Lett, 382, pp. 223-228
  • Honda, M., Tajima, M., Ab initio study of disulfide bond: Part I. Contribution of d polarization functions (1986) J Mol Struc-Theochem, 136, pp. 93-98
  • Honda, M., Tajima, M., Ab initio study of disulphide bond: Part II. The change in atomic distance between sulphur atoms on the reduction of disulphide to dithiol (1990) J Mol Struc-Theochem, 204, pp. 247-252
  • Honig, B., Nicholls, A., Classical electrostatics in biology and chemistry (1995) Science, 268, pp. 1144-1149
  • Houk, N.K., Hietbrink, B.H., Bartberger, M.D., McCarren, P.R., Choi, B.Y., Voyksner, R.D., Stamler, J.S., Toone, E.J., Nitroxyl disulfides, novel intermediates in transnitrosation reactions (2003) J Am Chem Soc, 125, pp. 6972-6976
  • Hudáky, I., Gáspári, Z., Carugo, O., Čemažar, M., Pongor, S., Perczel, A., Vicinal disulfide bridge conformers by experimental methods and by ab initio and DFT molecular computations (2004) Proteins, 55, pp. 152-168
  • Hugo, M., Turell, L., Manta, B., Botti, H., Monteiro, G., Netto, L.E.S., Alvarez, B., Trujillo, M., Thiol and sulfenic acid oxidation of AphE, the one-cystein peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics (2009) Biochemistry, 48, pp. 9416-9426
  • Ignarro, L.J., Nitric oxide: a unique endogenous signaling molecule in vascular biology (Nobel lecture) (1999) Angew Chem Int Ed, 38, pp. 1882-1892
  • Incze, K., Farkas, J., Mihalys, V., Zukal, E., Antibacterial effect of cysteine-nitrosothiol and possible percursors thereof (1974) Appl Microbiol, 27, pp. 202-205
  • Jao, S.C., English Ospina, S.M., Berdis, A.J., Starke, D.W., Post, C.B., Mieyal, J.J., Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis (2006) Biochemistry, 45, pp. 4785-4796
  • Jensen, K.S., Hansen, R.E., Winther, J.R., Kinetic and thermodynamic aspects of cellular thiol-disulfide redox regulation (2009) Antioxid Redox Signal, 11, pp. 1047-1058
  • Jones, D.P., Radical-free biology of oxidative stress (2008) Am J Physiol Cell Physiol, 295, pp. 849-868
  • Jourd'heuil, D., Jourd'heuil, F.L., Feelish, M., Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide evidence for a free radical mechanism (2003) J Biol Chem, 278, pp. 15720-15726
  • Kadokura, H., Katzen, F., Beckwith, J., Protein disulfide bond formation in prokaryotes (2003) Annu Rev Biochem, 72, pp. 111-135
  • Kassim, R., Ramseyer, C., Enescu, M., Oxidation of zinc-thiolate complexes of biological interest by hydrogen peroxide: a theoretical study (2011) Inorg Chem, 50, pp. 5407-5416
  • Katz, B.A., Kossiakoff, A., The crystallographically determined structures of atypical strained disulfides engineered into subtilisin (1986) J Biol Chem, 261, pp. 15480-15485
  • Keire, D.A., Strauss, E., Guo, W., Noszal, B., Rabenstein, D.L., Kinetics and equilibria of thiol/disulfide interchange reactions of selected biological thiols and related molecules with oxidized glutathione (1992) J Org Chem, 57, pp. 123-127
  • Kerwin, J.F., Lancaster, J.R., Feldman, P.L., Nitric oxide: a new paradigm for second messengers (1995) J Med Chem, 38, pp. 4343-4362
  • Kissner, R., Nauser, T., Bugnon, P., Lye, P.G., Koppenol, W.H., Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis (1997) Chem Res Toxicol, 10, pp. 1285-1292
  • Kóňa, J., Brinck, T., A combined molecular dynamics simulation and quantum chemical study on the mechanism for activation of the OxyR transcription factor by hydrogen peroxide (2006) Org Biomol Chem, 4, pp. 3468-3478
  • Koppenol, W.H., Moreno, J.J., Pryor, W.A., Ischiropoulos, H., Beckman, J.S., Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide (1992) Chem Res Toxicol, 5, pp. 834-842
  • Laio, A., Parrinello, M., Escaping free-energy minima (2002) Proc Natl Acad Sci USA, 99, pp. 12562-12566
  • Laio, A., VandeVondele, J., Rothlisberger, U., A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations (2002) J Chem Phys, 116, pp. 6941-6947
  • Lee, J., Soonsanga, S., Helmann, J.D., A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR (2007) Proc Natl Acad Sci USA, 104, pp. 8743-8748
  • Li, F., Bravo-Rodriguez, K., Phillips, C., Seidel, R.W., Wieberneit, F., Stoll, R., Doltsinis, N.L., Sander, W., Conformation and dynamics of a cyclic disulfide-bridged peptide: effects of temperature and solvent (2013) J Phys Chem B, 117, pp. 3560-3570
  • Li, H., Robertson, A.D., Jensen, J.H., Very fast empirical prediction and rationalization of protein pKa values (2005) Proteins, 61, pp. 704-721
  • Li, J., Wang, P.H., Schlegel, H.B., A computational exploration of some transnitrosation and thiolation reactions involving CH3SNO, CH3ONO and CH3NHNO (2006) Org Biomol Chem, 4, pp. 1352-1364
  • Lim, J.C., Gruschus, J.M., Kim, G., Berlett, B.S., Tjandra, N., Levine, R.L., A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A (2012) J Biol Chem, 287, pp. 25596-25601
  • Liu, X., Miller, M.J.S., Joshi, M.S., Thomas, D.D., Lancaster, J.R., Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes (1998) Proc Natl Acad Sci USA, 95, pp. 2175-2179
  • Lo Conte, M., Carroll, K.S., The chemistry of thiol oxidation and detection (2012) Oxidative Stress and Redox Regulation, pp. 1-51. , 1st edn., U. Jakob (Ed.), New York: Springer
  • Lu, J.M., Wittbrodt, J.M., Wang, K., Wen, Z., NO affinities of S-nitrosothiols: a direct experimental and computational investigation of RS-NO bond dissociation energies (2001) J Am Chem Soc, 123, pp. 2903-2904
  • Luo, D., Smith, S.W., Anderson, B.D., Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution (2005) J Pharm Sci, 94, pp. 304-316
  • MacKerell Jr., A.D., Feig, M., Brooks III, C.L., Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations (2004) J Comput Chem, 25, pp. 1400-1415
  • Madej, E., Folkes, L.K., Wardman, P., Czapski, G., Goldstein, S., Thiyl radicals react with nitric oxide to form S-nitrosothiols with rate constants near the diffusion-controlled limit (2008) Free Radic Biol Med, 44, pp. 2013-2018
  • Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., Denicola, A., The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2 (2009) Arch Biochem Biophys, 484, pp. 146-154
  • Marino, S.M., Gladyshev, V.N., Redox biology: computational approaches to the investigation of functional cysteine residues (2011) Antioxid Redox Signal, 15, pp. 135-146
  • Marino, S.M., Gladyshev, V.N., Analysis and functional prediction of reactive cysteine residues (2012) J Biol Chem, 287, pp. 4419-4425
  • Marletta, M.A., Nitric oxide synthase structure and mechanism (1993) J Biol Chem, 268, pp. 12231-12234
  • Miki, H., Funato, Y., Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species (2012) J Biochem, 151, pp. 255-261
  • Moller, M.N., Li, Q., Vitturi, D.A., Robinson, J.M., Lancaster, J.R., Denicola, A., Membrane "lens" effect: focusing the formation of reactive nitrogen oxides from the NO/O2 reaction (2007) Chem Res Toxicol, 20, pp. 709-714
  • Mossner, E., Huber-Wunderlich, M., Glockshuber, R., Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxido- reductases (1998) Protein Sci, 7, pp. 1233-1244
  • Munro, A.P., Williams, D.L.H., Reactivity of sulfur nucleophiles towards S-nitrosothiols (2000) J Chem Soc Perkin Trans, 2, pp. 1794-1797
  • Nagababu, E., Ramasamy, S., Rifkind, J.M., S-Nitrosohemoglobin: A mechanism for its formation in conjunction with nitrite reduction by deoxyhemoglobin (2006) Nitric Oxide, 15, pp. 20-29
  • Nagy, P., Ashby, M.T., Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid (2007) J Am Chem Soc, 129, pp. 14082-14091
  • Nagy, P., Karton, A., Betz, A., Peskin, A.V., Pace, P., O'Reilly, R.J., Winterbourn, C.C., Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide a kinetic and computational study (2011) J Biol Chem, 286, pp. 18048-18055
  • Nagy, P., Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways (2013) Antioxid Redox Signal, 18, pp. 1623-1641
  • Nathan, C., Xie, Q., Regulation of biosynthesis of nitric oxide (1994) J Biol Chem, 269, pp. 13725-13728
  • Navrot, N., Collin, V., Gualberto, J., Gelhaye, E., Hirasawa, M., Rey, P., Rouhier, N., Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses (2006) Plant Physiol, 142, pp. 1364-1379
  • Oliveira, M.G., Shishido, S.M., Seabra, A.B., Morgon, N.H., Thermal stability of primary S-nitrosothiols: roles of autocatalysis and structural effects on the rate of nitric oxide release (2002) J Phys Chem A, 106, pp. 8963-8970
  • Pacher, P., Beckman, J.S., Liaudet, L., Nitric oxide and peroxynitrite in health and disease (2007) Physiol Rev, 87, pp. 315-424
  • Park, S., Kahlili-Araghi, F., Tajkhorshid, E., Schulten, K., Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality (2003) J Chem Phys, 119, pp. 3559-3567
  • Parker, A.J., Kharasch, N., The scission of the sulfur-sulfur bond (1959) Chem Rev, 59, pp. 583-628
  • Parsonage, D., Youngblood, D.S., Sarma, G.N., Wood, Z.A., Karplus, P.A., Poole, L.B., Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin (2005) Biochemistry, 44, pp. 10583-10592
  • Paulsen, C.E., Carroll, K.S., Orchestrating redox signaling networks through regulatory cysteine switches (2010) ACS Chem Biol, 5, pp. 47-62
  • Pearson, J.K., Boyd, R.J., Modeling the reduction of hydrogen peroxide by glutathione peroxidase mimics (2006) J Phys Chem A, 110, pp. 8979-8985
  • Pearson, J.K., Boyd, R.J., Density functional theory study of the reaction mechanism and energetics of the reduction of hydrogen peroxide by ebselen, ebselen diselenide, and ebselen selenol (2007) J Phys Chem A, 111, pp. 3152-3160
  • Perissinotti, L.L., Estrin, D.A., Leitus, G., Doctorovich, F.J., A surprisingly stable S-nitrosothiol complex (2006) J Am Chem Soc, 128. , 2515-2513
  • Perissinotti, L.L., Leitus, G., Shimon, L., Estrin, D.A., Doctorovich, F., A unique family of stable and water-soluble S-nitrosothiol complexes (2008) Inorg Chem, 47, pp. 4723-4733
  • Perissinotti, L.L., Turjanski, A.G., Estrin, D.A., Doctorovich, F., Transnitrosation of nitrosothiols: characterization of an elusive intermediate (2005) J Am Chem Soc, 127, pp. 486-487
  • Perry, L.J., Wetzel, R., Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation (1984) Science, 226, pp. 555-557
  • Peskin, A.V., Cox, A.G., Nagy, P., Morgan, P.E., Hampton, M.B., Davies, M.J., Winterbourn, C.C., Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3 (2010) Biochem J, 432, pp. 313-321
  • Peskin, A.V., Dickerhof, N., Poynton, R.A., Paton, L.N., Pace, P.E., Hampton, M.B., Winterbourn, C.C., Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine (2013) J Biol Chem, 288, pp. 14170-14177
  • Peskin, A.V., Winterbourn, C.C., Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate (2001) Free Radic Biol Med, 30, pp. 572-579
  • Petruk, A.A., Bartesaghi, S., Trujillo, M., Estrin, D.A., Murgida, D., Kalyanaraman, B., Marti, M., Radi, R., Molecular basis of intramolecular electron transfer in proteins during radical-mediated oxidations: Computer simulation studies in model tyrosine-cysteine peptides in solution (2012) Arch Biochem Biophys, 525, pp. 82-91
  • Prütz, W.A., Butler, J., Land, E.J., Swallow, A.J., The role of sulphur peptide functions in free radical transfer: a pulse radiolysis study (1989) Int J Radiat Biol, 55, pp. 539-556
  • Pryor, W.A., Squadrito, G.L., The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide (1995) Am J Physiol, 268, pp. 699-722
  • Radi, R., Beckman, J.S., Bush, K.M., Freeman, B.A., Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide (1991) J Biol Chem, 266, pp. 4244-4250
  • Rao, B.N.N., Kumar, A., Balaram, H., Ravi, A., Balaram, P., Nuclear Overhauser effects and circular dichroism as probes of β-turn conformations in acyclic and cyclic peptides with pro-X sequences (1983) J Am Chem Soc, 105, pp. 7423-7428
  • Reyes, A.M., Hugo, M., Trostchansky, A., Capece, L., Radi, R., Trujillo, M., Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation (2011) Free Radic Biol Med, 51, pp. 464-473
  • Rhee, S.G., Kang, S.W., Jeong, W., Chang, T.S., Yang, K.S., Woo, H., Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins (2005) Curr Opin Cell Biol, 17, pp. 183-189
  • Rockett, K.A., Awburn, M.M., Cowden, W.B., Clark, I.A., Killing of Plasmodium falciparum in vitro by nitric oxide derivatives (1991) Infect Immun, 59, pp. 3280-3283
  • Romero, N., Radi, R., Linares, E., Augusto, O., Detweiler, C.D., Mason, R.P., Denicola, A., Reaction of human hemoglobin with peroxynitrite isomerization to nitrate and secondary formation of protein radicals (2003) J Biol Chem, 278, pp. 44049-44057
  • Roos, G., Foloppe, N., Messens, J., Understanding the pKa of redox cysteines: the key role of hydrogen bonding (2013) Antioxid Redox Signal, 18, pp. 94-127
  • Roos, G., De Proft, F., Geerlings, P., Electron capture by the thiyl radical and disulfide bond: ligand effects on the reduction potential (2013) Chem Eur J, 19, pp. 5050-5060
  • Roos, G., Foloppe, N., van Laer, K., Wyns, L., Nilsson, L., Geerlings, P., Messens, J., How thioredoxin dissociates its mixed disulfide (2009) PloS Comp Biol, 5, p. 1000461
  • Salmeen, A., Andersen, J.N., Myers, M.P., Meng, T.-C., Hinks, J., Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate (2003) Nature, 423, pp. 769-773
  • Salsbury, F.R., Poole, L.B., Fetrow, J.S., Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model (2012) Proteins, 80, pp. 2583-2591
  • Salsbury, F.R., Yuan, Y., Knaggs, M.H., Poole, L.B., Fetrow, J.S., Structural and electrostatic asymmetry at the active site in typical and atypical peroxiredoxin dimers (2012) J Phys Chem B, 116, pp. 6832-6843
  • Sanchez, R., Riddle, M., Woo, J., Momand, J., Prediction of reversibly oxidized protein cysteine thiols using protein structure properties (2008) Protein Sci, 17, pp. 473-481
  • Sarma, B.K., Mugesh, G., Redox regulation of protein tyrosine phosphatase 1B (PTP1B): a biomimetic study on the unexpected formation of a sulfenyl amide intermediate (2007) J Am Chem Soc, 129, pp. 8872-8881
  • Savojardo, C., Fariselli, P., Martelli, P.L., Shukla, P., Casadio, R., Prediction of the bonding state of cysteine residues in proteins with machine-learning methods (2011) Lect Notes Comput Sc, 6685, pp. 98-111
  • Schmid, N., Eichenberger, A., Choutko, A., Riniker, S., Winger, M., Mark, A., van Gunsteren, W., Definition and testing of the GROMOS force-field versions 54A7 and 54B7 (2011) Eur Biophys J, 40, pp. 843-856
  • Schrammel, A., Gorren, A.C.F., Schmidt, K., Pfeiffer, S., Mayer, B., S-nitrosation of glutathione by nitric oxide, peroxynitrite, and.NO/O2- (2003) Free Radical Biol Med, 34, pp. 1078-1088
  • Sengupta, D., Behera, R.N., Smith, J.C., Ullmann, G.M., The alpha helix dipole: screened out? (2005) Structure, 13, pp. 849-855
  • Senn, H.M., Thiel, W., QM/MM methods for biomolecular systems (2009) Angew Chem Int Ed, 48, pp. 1198-1229
  • Seo, Y.H., Carroll, K.S., Facile synthesis and biological evaluation of a cell-permeable probe to detect redox-regulated proteins (2009) Bioorg Med Chem Lett, 19, pp. 356-359
  • Sevier, C.S., Kaiser, C.A., Formation and transfer of disulphide bonds in living cells (2002) Nat Rev Mol Cell Biol, 3, pp. 836-847
  • Singh, R., Whitesides, G.M., Comparisons of rate constants for thiolate-disulfide interchange in water and in polar aprotic solvents using dynamic proton NMR line shape analysis (1990) J Am Chem Soc, 112, pp. 1190-1197
  • Singh, S.P., Wishnok, J.S., Keshive, M., Deen, W.M., Tannenbaum, S.R., The chemistry of the S-nitrosoglutathione/glutathione system (1996) Proc Natl Acad Sci USA, 93. , 14448-14433
  • Sivaramakrishnan, S., Keerthi, K., Gates, K.S., A chemical model for redox regulation of protein tyrosine phosphatase 1B (PTP1B) activity (2005) J Am Chem Soc, 127, pp. 10830-10831
  • Sjöberg, L., Eriksen, T.E., Révész, L., The reaction of the hydroxyl radical with glutathione in neutral and alkaline aqueous solution (1982) Radiat Res, 89, pp. 255-263
  • Søndergaard, C.R., Olsson, H.M.M., Rostkowski, M., Jensen, J.H., Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values (2011) J Chem Theory Comput, 7, pp. 2284-2295
  • Sonnhammer, E.L., Eddy, S.R., Durbin, R., Pfam: a comprehensive database of protein domain families based on seed alignments (1997) Proteins, 28, pp. 405-420
  • Srinivasan, N., Sowdhamini, R., Ramakrishnan, C., Balaram, P., Conformations of disulfide bridges in proteins (1990) Int J Pept Protein Res, 36, pp. 147-155
  • Stacey, M.M., Vissers, M.C., Winterbourn, C.C., Oxidation of 2-cys peroxiredoxins in human endothelial cells by hydrogen peroxide, hypochlorous acid, and chloramines (2012) Antioxid Redox Signal, 17, pp. 411-421
  • Stubauer, G., Guffre, A., Sarti, P., Mechanism of S-nitrosothiol formation and degradation mediated by copper ions (1999) J Biol Chem, 274, pp. 28128-28133
  • Stubbe, J., van Der Donk, W.A., Protein radicals in enzyme catalysis (1998) Chem Rev, 98, pp. 705-762
  • Suzuki, H., Fukushi, K., Ikawa, S., Konaka, S., Vibrational spectra and conformation of diallyl disulphide in the liquid state (1990) J Mol Struc, 221, pp. 141-148
  • Swarts, S.G., Becker, D., DeBolt, S., Sevilla, M.D., Electron spin resonance investigation of the structure and formation of sulfinyl radicals: reaction of peroxyl radicals with thiols (1989) J Phys Chem, 93, pp. 155-161
  • Szacilowski, A., Chmura, S.Z., Interplay between iron complexes, nitric oxide and sulfur ligands: structure, (photo) reactivity and biological importance (2005) Coord Chem Rev, 249, pp. 2408-2436
  • Talipov, M.R., Timerghazin, Q.K., Protein control of S-nitrosothiol reactivity: interplay of antagonistic resonance structures (2013) J Phys Chem B, 117, pp. 1827-1837
  • Tasker, H.S., Jones, H.O., The action of mercaptans on acid chlorides. Part II. The acid chlorides of phosphorus, sulphur, and nitrogen (1909) J Chem Soc, 95, pp. 1910-1918
  • Thurlkill, R.L., Grimsley, G.R., Scholtz, J.M., Pace, C.N., pK values of the ionizable groups of proteins (2006) Protein Sci, 15, pp. 1214-1218
  • Timerghazin, Q.K., Talipov, M.R., Unprecedented external electric field effects on S-nitrosothiols: possible mechanism of biological regulation? (2013) J Phys Chem Lett, 4, pp. 1034-1038
  • Timerghazin, Q.K., Pelsherbe, G.H., English, A.M., Resonance description of S-nitrosothiols: insights into reactivity (2007) Org Lett, 9, pp. 3049-3052
  • Timerghazin, Q.K., English, A.M., Peslherbe, G.H., On the multireference character of S-nitrosothiols: a theoretical study of HSNO (2008) Chem Phys Lett, 454, pp. 24-29
  • Timerghazin, Q.K., Peslherbe, G.H., English, A.M., Structure and stability of HSNO, the simplest S-nitrosothiol (2008) Phys Chem Chem Phys, 10, pp. 1532-1539
  • Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.P., Knoops, B., Radi, R., Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation (2007) Arch Biochem Biophys, 467, pp. 95-106
  • Trujillo, M., Radi, R., Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: new insights into the reaction of peroxynitrite with thiols (2002) Arch Biochem Biophys, 397, pp. 91-98
  • Turell, L., Botti, H., Carballal, S., Ferrer-Sueta, G., Souza, J.M., Durán, R., Freeman, B.A., Alvarez, B., Reactivity of sulfenic acid in human serum albumin (2008) Biochemistry, 47, pp. 358-367
  • van der Kamp, M.W., Mulholland, A.J., Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology (2013) Biochemistry, 52, pp. 2708-2728
  • van Gastel, M., Lubitz, W., Lassmann, G., Neese, F., Electronic structure of the cysteine thiyl radical: a DFT and correlated ab initio study (2004) JAm Chem Soc, 126, pp. 2237-2246
  • Wada, A., The alpha-helix as an electric macro-dipole (1976) Adv Biophys, pp. 1-63
  • Wang, K., Wen, Z., Zhang, W., Xian, M., Cheng, J.P., Wang, P.G., Equilibrium and kinetics studies of transnitrosation between S-nitrosothiols and thiols (2001) Bioorg Med Chem Lett, 11, pp. 433-436
  • Wang, P.G., Xian, M., Tang, X., Wu, X., Nitric oxide donors: chemical activities and biological applications (2002) Chem Rev, 102, pp. 1091-1134
  • Warshel, A., Levitt, M., Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme (1976) J Mol Biol, 103, pp. 227-249
  • Weinhold, F., Landis, C.R., Valency, Bonding, (2005) A Natural Bond Orbital Donor-Aceptor Perspective, , Cambridge: Cambridge University Press
  • Wennmohs, F., Staemmler, V., Schindler, M., Theoretical investigation of weak hydrogen bonds to sulfur (2003) J Chem Phys, 119, pp. 3208-3218
  • Wetzel, R., Perry, L.J., Baase, W.A., Becktel, W.J., Disulfide bonds and thermal stability in T4 lysozyme (1988) Proc Natl Acad Sci U S A, 85, pp. 401-405
  • Wilson, M.A., Amour, C.V.S., Collins, J.L., Ringe, D., Petsko, G.A., The 1.8 Å resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: A member of the DJ-1? ThiJ? PfpI superfamily (2004) Proc Natl Acad Sci USA, 101, pp. 1531-1536
  • Wink, D.A., Nims, R.W., Darbyshire, J.F., Christodoulou, D., Hanbauer, I., Cox, G.W., Laval, F., Cook, J.A., Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction (1994) Chem Res Toxicol, 7, pp. 519-525
  • Winterbourn, C.C., (2013) Oxidative Stress and Redox Regulation, pp. 43-58. , 1st edn., U. Jakob and D. Reichmann (Eds.), Netherlands: Springer
  • Winterbourn, C.C., Hampton, M.B., Thiol chemistry and specificity in redox signaling (2008) Free Radic Biol Med, 45, pp. 549-561
  • Winterbourn, C.C., Metodiewa, D., The reaction of superoxide with reduced glutathione (1994) Arch Biochem Biophys, 314, pp. 284-290
  • Winterbourn, C.C., Metodiewa, D., Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide (1999) Free Radic Biol Med, 27, pp. 322-328
  • Wolf, C., Hochgräfe, F., Kusch, H., Albrecht, D., Hecker, M., Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants (2008) Proteomics, 8, pp. 3139-3153
  • Wong, P.S.Y., Hyun, J., Fukuto, J.M., Shirota, F.N., DeMaster, E.G., Shoeman, D.W., Nagasawa, H.T., Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry (1998) Biochemistry, 37, pp. 5362-5371
  • Yang, A.-S., Gunner, M.R., Sampogna, R., Sharp, K., Honig, B., On the calculation of pKas in proteins (1993) Proteins, 15, pp. 252-265
  • Yang, J., Groen, A., Lemeer, S., Jans, A., Slijper, M., Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide (2007) Biochemistry, 46, pp. 709-719
  • Yuan, Y., Knaggsa, M.H., Poolec, L.B., Fetrowab, J.S., Salsbury, F.R., Conformational and oligomeric effects on the cysteine pK(a) of tryparedoxin peroxidase (2010) J Biomol Struct Dyn, 28, pp. 51-70
  • Zeida, A., Babbush, R., González Lebrero, M.C., Trujillo, M., Radi, R., Estrin, D.A., Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: challenging the SN2 paradigm (2012) Chem Res Toxicol, 25, pp. 741-746
  • Zeida, A., González Lebrero, M.C., Trujillo, M., Radi, R., Estrin, D.A., Mechanism of cysteine oxidation by peroxynitrite: An integrated experimental and theoretical study (2013) Arch Biochem Biophys, 539, pp. 81-86
  • Zhang, T., Bertelsen, E., Alber, T., Entropic effects of disulphide bonds on protein stability (1994) Nat Struct Biol, 1, pp. 434-438
  • Zhang, W., Chen, J., Efficiency of adaptive temperature-based replica exchange for sampling large-scale protein conformational transitions (2013) J Chem Theory Comp, 9, pp. 2849-2856
  • Zhang, H., Xu, Y., Joseph, J., Kalyanaraman, B., Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2-EPR spin trapping studies (2005) J Biol Chem, 280, pp. 40684-40698

Citas:

---------- APA ----------
Zeida, A., Guardia, C.M., Lichtig, P., Perissinotti, L.L., Defelipe, L.A., Turjanski, A., Radi, R.,..., Estrin, D.A. (2014) . Thiol redox biochemistry: Insights from computer simulations. Biophysical Reviews, 6(1), 27-46.
http://dx.doi.org/10.1007/s12551-013-0127-x
---------- CHICAGO ----------
Zeida, A., Guardia, C.M., Lichtig, P., Perissinotti, L.L., Defelipe, L.A., Turjanski, A., et al. "Thiol redox biochemistry: Insights from computer simulations" . Biophysical Reviews 6, no. 1 (2014) : 27-46.
http://dx.doi.org/10.1007/s12551-013-0127-x
---------- MLA ----------
Zeida, A., Guardia, C.M., Lichtig, P., Perissinotti, L.L., Defelipe, L.A., Turjanski, A., et al. "Thiol redox biochemistry: Insights from computer simulations" . Biophysical Reviews, vol. 6, no. 1, 2014, pp. 27-46.
http://dx.doi.org/10.1007/s12551-013-0127-x
---------- VANCOUVER ----------
Zeida, A., Guardia, C.M., Lichtig, P., Perissinotti, L.L., Defelipe, L.A., Turjanski, A., et al. Thiol redox biochemistry: Insights from computer simulations. Biophys. Rev. 2014;6(1):27-46.
http://dx.doi.org/10.1007/s12551-013-0127-x