Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Gravity waves (GWs) and convective systems play a fundamental role in atmospheric circulation, weather, and climate. Two usual main sources of GWs are orographic effects triggering mountain waves and convective activity. In addition, GW generation by fronts and geostrophic adjustment must also be considered. The utility of Global Positioning System (GPS) radio occultation (RO) observations for the detection of convective systems is tested. A collocation database between RO events and convective systems over subtropical to midlatitude mountain regions close to the Alps and Andes is built. From the observation of large-amplitude GW structures in the absence of jets and fronts, subsets of RO profiles are sampled. A representative case study among those considered at each region is selected and analyzed. The case studies are investigated using mesoscale Weather Research and Forecasting (WRF) simulations, ERA-Interim reanalysis data, and measured RO temperature profiles. The absence of fronts or jets during both case studies reveals similar relevant GW features (main parameters, generation, and propagation). Orographic and convective activity generates the observed GWs. Mountain waves above the Alps reach higher altitudes than close to the Andes. In the Andes case, a critical layer prevents the propagation of GW packets up to stratospheric heights. The case studies are selected also because they illustrate how the observational window for GW observations through RO profiles admits a misleading interpretation of structures at different altitude ranges. From recent results, the distortion introduced in the measured atmospheric vertical wavelengths by one of the RO events is discussed as an illustration. In the analysis, both the elevation angle of the sounding path (line of tangent points) and the gravity wave aspect ratio estimated from the simulations and the line of sight are taken into account. In both case studies, a considerable distortion, over- and underestimation of the vertical wavelengths measured by RO, may be expected. © Author(s) 2018.

Registro:

Documento: Artículo
Título:Orographic and convective gravity waves above the Alps and Andes Mountains during GPS radio occultation events - A case study
Autor:Hierro, R.; Steiner, A.K.; De La Torre, A.; Alexander, P.; Llamedo, P.; Cremades, P.
Filiación:Facultad de Ingeniería, Universidad Austral and CONICET, Pilar, Provincia de Buenos Aires, B1629ODT, Argentina
Wegener Center for Climate and Global Change (WEGC), University of Graz, Graz, Austria
Institute for Geophysics, Astrophysics, and Meteorology, Institute of Physics, University of Graz, Graz, Austria
IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
Palabras clave:atmospheric circulation; GPS; gravity wave; instrumentation; mountain region; orography; radio; stratosphere; subtropical region; weather forecasting; Alps; Andes
Año:2018
Volumen:11
Número:6
Página de inicio:3523
Página de fin:3539
DOI: http://dx.doi.org/10.5194/amt-11-3523-2018
Título revista:Atmospheric Measurement Techniques
Título revista abreviado:Atmos. Meas. Tech.
ISSN:18671381
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18671381_v11_n6_p3523_Hierro

Referencias:

  • Alexander, M.J., The gravity wave response above deep convection in a squall line simulation (1995) J. Atmos. Sci., 52, pp. 2212-2226
  • Alexander, P., De La Torre, A., Llamedo, P., The interpretation of gravity waves signatures extracted from GPS radio occultations (2008) J. Geophys. Res., 113, p. D16117. , https://doi.org/10.1029/2007JD009390
  • Alexander, P., De La Torre, A., Llamedo, P., Hierro, R., Schmidt, T., Haser, A., Wickert, J., A method to improve the determination of wave perturbations close to the tropopause by using a digital filter (2011) Atmos. Meas. Tech., 4, pp. 1777-1784. , https://doi.org/10.5194/amt-4-1777-2011
  • Angerer, B., Ladstädter, F., Scherllin-Pirscher, B., Schwärz, M., Steiner, A.K., Foelsche, U., Kirchengast, G., Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6 (2017) Atmos. Meas. Tech., 10, pp. 4845-4863. , https://doi.org/10.5194/amt-10-4845-2017
  • Barthlott, C., Corsmeier, U., Meißner, C., Braun, F., Kottmeier, C., The influence of mesoscale circulation systems on triggering convective cells over complex terrain (2006) Atmos. Res., 81, pp. 150-175
  • Beres, J.H., Alexander, M.J., Holton, J.R., Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves (2002) J. Atmos. Sci., 59, pp. 1805-1824
  • Bica, B., Knabl, T., Steinacker, R., Ratheiser, M., Dorninger, M., Lotteraner, C., Schneider, S., Tschannett, S., Thermally and dynamically induced pressure features over complex terrain from high-resolution analyses (2007) J. Appl. Meteor. Clim., 46, pp. 50-65. , https://doi.org/10.1175/JAM2418.1
  • Biondi, R., Neubert, T., Syndergaard, S., Nielsen, J.K., Radio occultation bending angle anomalies during tropical cyclones (2011) Atmos. Meas. Tech., 4, pp. 1053-1060. , https://doi.org/10.5194/amt-4-1053-2011
  • Biondi, R., Randel, W.J., Ho, S.-P., Neubert, T., Syndergaard, S., Thermal structure of intense convective clouds derived from GPS radio occultations (2012) Atmos. Chem. Phys., 12, pp. 5309-5318. , https://doi.org/10.5194/acp-12-5309-2012
  • Biondi, R., Ho, S.-P., Randel, W., Syndergaard, S., Neubert, T., Tropical cyclone cloud-top height and vertical temperature structure detection using GPS radio occultation measurements (2013) J. Geophys. Res.-Atmos., 118, pp. 5247-5259. , https://doi.org/10.1002/jgrd.50448
  • Biondi, R., Steiner, A.K., Kirchengast, G., Rieckh, T., Characterization of thermal structure and conditions for overshooting of tropical and extratropical cyclones with GPS radio occultation (2015) Atmos. Chem. Phys., 15, pp. 5181-5193. , https://doi.org/10.5194/acp-15-5181-2015
  • Biondi, R., Steiner, A.K., Kirchengast, G., Brenot, H., Rieckh, T., Supporting the detection and monitoring of volcanic clouds: A promising new application of Global Navigation Satellite System radio occultation (2017) Adv. Space Res., 60, pp. 2707-2722. , https://doi.org/10.1016/j.asr.2017.06.039
  • Clark, T.L., Hauf, T., Kuettner, J.P., Convectively forced internal gravity waves: Results from two-dimensional numerical experiments (1986) Q. J. Roy. Meteor. Soc., 112, pp. 899-925. , https://doi.org/10.1002/qj.49711247402
  • De La Torre, A., Alexander, P., The interpretation of wavelengths nd periods as measured from atmospheric balloons (1995) J. Appl. Meteorol., 34, pp. 2747-2754
  • De La Torre, A., Daniel, V., Tailleux, R., Teitelbaum, H., A Deep Convection Event above the Tunuyán Valley near the Andes Mountains (2004) Mon. Weather Rev., 132, pp. 2259-2268. , https://doi.org/10.1175/1520-0493(2004)1322259:ADCEAT2.0.CO;2
  • De La Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., Wickert, J., Gravity waves above andes detected from GPS radio occultation temperature profiles. II: Jet mechanism? (2006) Geophys. Res. Lett., 33, p. L24810. , https://doi.org/10.1029/2006GL027343
  • De La Torre, A., Hierro, R., Llamedo, P., Rolla, A., Alexander, P., Severe hail storms near southern andes in the presence of mountain waves (2011) Atmos. Res., 101, pp. 112-123. , https://doi.org/10.1016/j.atmosres.2011.01.015
  • De La Torre, A., Alexander, P., Hierro, R., Llamedo, P., Rolla, A., Schmidt, T., Wickert, J., Large amplitude gravity waves above the southern andes (2012) The Drake Passage and the Antarctic Peninsula, J. Geophys. Res.-Atmos., 117, p. D02106. , https://doi.org/10.1029/2011JD016377
  • De La Torre, A., Pessano, H., Hierro, R., Santos, R., Llamedo, P., Alexander, P., The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains (2015) Atmos. Res., 156, pp. 91-101. , https://doi.org/10.1016/j.atmosres.2014.12.020
  • De La Torre, A., Alexander, P., Schmidt, T., Llamedo, P., Hierro, R., On the distortions in calculated GW parameters during slanted atmospheric soundings (2018) Atmos. Meas. Tech., 11, pp. 1363-1375. , https://doi.org/10.5194/amt-11-1363-2018
  • Demko, J.C., Geerts, B., Miao, Q., Zehnder, J.A., Boundary layer energy transport and cumulus development over a heated mountain (2009) An Observational Study, Mon.Weather Rev., 137, pp. 447-468
  • Dudhia, J., Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model (1989) J. Atmos. Sci., 46, pp. 3077-3107. , https://doi.org/10.1175/1520-0469(1989)0463077:NSOCOD2.0.CO;2
  • Dutta, G., Ajay Kumar, M.C., Vinay Kumar, P., Venkat Ratnam, M., Chandrashekar, M., Shibagaki, Y., Salauddin, M., Basha, H.A., Characteristics of high-frequency gravity waves generated by tropical deep convection: Case studies (2009) J. Geophys. Res., 114, p. D18109. , https://doi.org/10.1029/2008JD011332
  • Eckermann, S.D., Preusse, P., Global measurements of stratospheric mountain waves from space (1999) Science, 286, pp. 1534-1537
  • Evan, S., Alexander, M.J., Dudhia, J., Model Study of intermediate-scale tropical inertia-gravity waves and comparison to twp-ice campaign observations (2012) J. Atmos. Sci., 69, pp. 591-610. , https://doi.org/10.1175/JAS-D-11-051.1
  • Fovell, R., Durran, D., Holton, J.R., Numerical simulations of convectively generated stratospheric gravity waves (1992) J. Atmos. Sci., 49, pp. 1427-1442
  • Fritts, D.C., Alexander, M.J., Gravity wave dynamics and effects in the middle atmosphere (2003) Rev. Geophys., 41, p. 1003. , https://doi.org/10.1029/2001RG000106
  • Grell, G.A., Devenyi, D., A generalized approach to parameterizing convection combining ensemble and data assimilation techniques (2002) Geophys. Res. Lett., 29, p. 1693. , https://doi.org/10.1029/2002GL015311
  • Hierro, R., Pessano, H., Llamedo, P., De La Torre, A., Alexander, P., Odiard, A., Orographic effects related to deep convection events over the Andes region (2013) Atmos. Res., 120-121, pp. 216-225. , https://doi.org/10.1016/j.atmosres.2012.08.020
  • Hong, S.-Y., Dudhia, J., Chen, S.-H., A revised approach to ice microphysical processes for the bulk parameterization of cloud and precipitation (2004) Mon. Weather Rev., 132, pp. 103-120
  • Hong, S.-Y., Noh, Y., Dudhia, J., A new vertical diffusion package with an explicit treatment of entrainment processes (2006) Mon. Weather Rev., 134, pp. 2318-2341
  • Houze, R.A., Jr., Orographic effects on precipitating clouds (2012) Rev. Geophys., 50, p. RG1001. , https://doi.org/10.1029/2011RG000365
  • Kursinski, E.R., Gebhardt, T., A method to deconvolve errors in GPS RO-derived water vapor histograms (2014) J. Atmos. Ocean. Tech., 31, pp. 2606-2628. , https://doi.org/10.1175/JTECHD-13-00233.1
  • Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfield, R.P., Hardy, K.R., Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System (1997) J. Geophys. Res, 102, pp. 23429-23465. , https://doi.org/10.1029/97JD01569
  • Langhans, W., Schmidli, J., Fuhrer, O., Bieri, S., Schär, C., Long-term simulations of thermally driven flows and orographic convection at convection-parameterizing and cloud-resolving resolutions (2013) J. Appl. Meteorol. Clim., 52, pp. 1490-1510. , https://doi.org/10.1175/JAMC-D-12-0167.1
  • Lau, K.-M., Weng, H., Climate signal detection using wavelet transform: How to make a time series sing (1995) B. Am. Meteorol. Soc., 76, pp. 2391-2402
  • Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A., Radiative transfer for inhomogeneous atmosphere: RRTM a validated correlated-k model for the long-wave (1997) J. Geophys. Res., 102, pp. 16663-16682
  • Monin, A.S., Obukhov, A.M., Basic laws of turbulent mixing in the surface layer of the atmosphere (1954) Trans. Geophys. Inst. Akad. Nauk. USSR, 151, pp. 163-187
  • Preusse, P., Dornbrack, A., Eckermann, S.D., Riese, M., Schaeler, B., Bacmeister, J.T., Broutman, D., Grossmann, K.U., Space-based measurements of stratospheric mountain waves by CRISTA: 1. Sensitivity analysis method, and a case study (2002) J. Geophys. Res., 107, p. 8178. , https://doi.org/10.1029/2001JD000699
  • Morlet, J., Sampling theory and wave propagation (1983) Acoustic Signal/ Image Processing and Recognition, In: NATO ASI, 1, pp. 233-261. , edited by: Chen, C., , Springer-Verlag, New York
  • Pandya, R.E., Alexander, M.J., Linear stratospheric gravity waves above convective thermal forcing (1999) J. Atmos. Sci., 56, pp. 2434-2446
  • Plougonven, R., Zhang, F., Internal gravity waves from atmospheric jets and fronts (2014) Rev. Geophys., 52, pp. 33-76. , https://doi.org/10.1002/2012RG000419
  • Rossow, W.B., Walker, A.W., Beuschel, D., Roiter, M., (1996) International Satellite Cloud Climatology Project (ISCCP) Description of New Cloud Datasets, 115p. , WMO/TD-No. 737, World Climate Research Programme (ICSU and WMO), February 1996, Geneva
  • Röttger, J., Structure and dynamics of the stratosphere and mesosphere revealed by VHF radar investigation (1980) Pure Appl. Geophys., 118, pp. 494-527. , https://doi.org/10.1007/BF01586465
  • Scherllin-Pirscher, B., Steiner, A.K., Kirchengast, G., Kuo, Y.-H., Foelsche, U., Empirical analysis and modeling of errors of atmospheric profiles from GPS radio occultation (2011) Atmos. Meas. Tech., 4, pp. 1875-1890. , https://doi.org/10.5194/amt-4-1875-2011
  • Scherllin-Pirscher, B., Steiner, A.K., Kirchengast, G., Schwärz, M., Leroy, S.S., The power of vertical geolocation of atmospheric profiles from GNSS radio occultation (2017) J. Geophys. Res.-Atmos., 122, pp. 1595-1616. , https://doi.org/10.1002/2016JD025902
  • Schwärz, M., Kirchengast, G., Scherllin-Pirscher, B., Schwarz, J., Ladstädter, F., Angerer, B., (2016) Multi-mission Validation by Satellite Radio Occultation Extension Project-Final Report, , https://wegcwww.uni-graz.at/publ/wegcpubl/arsclisys/2016/Schwaerz-etal_MMValRO-FinRep_Dec2016.pdf, Tech. Rep. for ESA/ESRIN No. 01/2016, Wegener Center, University of Graz, Graz, Austria, available at: (last access: 14 June 2018)
  • Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M., Huang, X.-Y., Powers, J.G., (2008) A Description of the Advaced Research WRF Version 3, , NCAR Technical Note NCAR/TN-475CSTR
  • Steiner, A.K., Kirchengast, G., Error analysis for GNSS radio occultation data based on ensembles of profiles from end-to-end simulations (2005) J. Geophys. Res., 110, p. D15307. , https://doi.org/10.1029/2004JD005251
  • Steiner, A.K., Lackner, B.C., Ladstädter, F., Scherllin-Pirscher, B., Foelsche, U., Kirchengast, G., GPS radio occultation for climate monitoring and change detection (2011) Radio Sci., 46, p. RS0D24. , https://doi.org/10.1029/2010RS004614
  • Steiner, A.K., Hunt, D., Ho, S.-P., Kirchengast, G., Mannucci, A.J., Scherllin-Pirscher, B., Gleisner, H., Wickert, J., Quantification of structural uncertainty in climate data records from GPS radio occultation (2013) Atmos. Chem. Phys., 13, pp. 1469-1484. , https://doi.org/10.5194/acp-13-1469-2013
  • Stephan, C., Alexander, M.J., Summer season squall-line simulations: Sensitivity of gravity waves to physics parametrization and implications for their parametrization in global climate models (2014) J. Atmos. Sci., 71, pp. 3376-3391. , https://doi.org/10.1175/JASD-13-0380.1
  • Zhang, F., Generation of mesoscale gravity waves in uppertropospheric jet-front systems (2004) J. Atmos. Sci., 61, pp. 440-457
  • Zhang, F., Koch, S.E., Davis, C.A., Kaplan, M.L., A survey of unbalanced flow diagnostics and their application (2000) Adv. Atmos. Sci., 17, pp. 165-183. , https://doi.org/10.1007/s00376-000-0001-1

Citas:

---------- APA ----------
Hierro, R., Steiner, A.K., De La Torre, A., Alexander, P., Llamedo, P. & Cremades, P. (2018) . Orographic and convective gravity waves above the Alps and Andes Mountains during GPS radio occultation events - A case study. Atmospheric Measurement Techniques, 11(6), 3523-3539.
http://dx.doi.org/10.5194/amt-11-3523-2018
---------- CHICAGO ----------
Hierro, R., Steiner, A.K., De La Torre, A., Alexander, P., Llamedo, P., Cremades, P. "Orographic and convective gravity waves above the Alps and Andes Mountains during GPS radio occultation events - A case study" . Atmospheric Measurement Techniques 11, no. 6 (2018) : 3523-3539.
http://dx.doi.org/10.5194/amt-11-3523-2018
---------- MLA ----------
Hierro, R., Steiner, A.K., De La Torre, A., Alexander, P., Llamedo, P., Cremades, P. "Orographic and convective gravity waves above the Alps and Andes Mountains during GPS radio occultation events - A case study" . Atmospheric Measurement Techniques, vol. 11, no. 6, 2018, pp. 3523-3539.
http://dx.doi.org/10.5194/amt-11-3523-2018
---------- VANCOUVER ----------
Hierro, R., Steiner, A.K., De La Torre, A., Alexander, P., Llamedo, P., Cremades, P. Orographic and convective gravity waves above the Alps and Andes Mountains during GPS radio occultation events - A case study. Atmos. Meas. Tech. 2018;11(6):3523-3539.
http://dx.doi.org/10.5194/amt-11-3523-2018