Artículo

Torres, N.I.; Noll, K.S.; Xu, S.; Li, J.; Huang, Q.; Sinko, P.J.; Wachsman, M.B.; Chikindas, M.L. "Safety, Formulation and In Vitro Antiviral Activity of the Antimicrobial Peptide Subtilosin Against Herpes Simplex Virus Type 1" (2013) Probiotics and Antimicrobial Proteins. 5(1):26-35
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the present study, the antiviral properties of the bacteriocin subtilosin against Herpes simplex virus type 1 (HSV-1) and the safety and efficacy of a subtilosin-based nanofiber formulation were determined. High concentrations of subtilosin, the cyclical antimicrobial peptide produced by Bacillus amyloliquefaciens, were virucidal against HSV-1. Interestingly, at non-virucidal concentrations, subtilosin inhibited wild type HSV-1 and aciclovir-resistant mutants in a dose-dependent manner. Although the exact antiviral mechanism is not fully understood, time of addition experiments and western blot analysis suggest that subtilosin does not affect viral multiplication steps prior to protein synthesis. Poly(vinyl alcohol)-based subtilosin nanofibers with a width of 278 nm were produced by the electrospinning process. The retained antimicrobial activity of the subtilosin-based fibers was determined via an agar well diffusion assay. The loading capacity of the fibers was 2. 4 mg subtilosin/g fiber, and loading efficiency was 31. 6 %. Furthermore, the nanofibers with and without incorporated subtilosin were shown to be non-toxic to human epidermal tissues using an in vitro human tissue model. Taking together these results, subtilosin-based nanofibers should be further studied as a novel alternative method for treatment and/or control of HSV-1 infection. © 2013 Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Safety, Formulation and In Vitro Antiviral Activity of the Antimicrobial Peptide Subtilosin Against Herpes Simplex Virus Type 1
Autor:Torres, N.I.; Noll, K.S.; Xu, S.; Li, J.; Huang, Q.; Sinko, P.J.; Wachsman, M.B.; Chikindas, M.L.
Filiación:Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 65 Dudley Road, NB, NJ, 08901, United States
Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, United States
Kraft Foods, Inc., 555 South Broadway, Tarrytown, NY, 10591, United States
Palabras clave:Antiviral; Bacteriocin; Nanofiber; Subtilosin; aciclovir; foscarnet; nanofiber; polypeptide antibiotic agent; polyvinyl alcohol; subtilosin; unclassified drug; agar diffusion; animal cell; antiviral activity; article; Bacillus amyloliquefaciens; concentration response; controlled study; drug cytotoxicity; drug delivery system; drug efficacy; drug formulation; drug safety; electrospinning; epidermis; Herpes simplex virus 1; human; human tissue; in vitro study; nonhuman; priority journal; protein synthesis; Vero cell; virogenesis; virus inhibition; virus mutant; Western blotting; wild type; Bacillus amyloliquefaciens; Human herpesvirus 1
Año:2013
Volumen:5
Número:1
Página de inicio:26
Página de fin:35
DOI: http://dx.doi.org/10.1007/s12602-012-9123-x
Título revista:Probiotics and Antimicrobial Proteins
Título revista abreviado:Probiotics Antimicrob. Proteins
ISSN:18671306
CAS:aciclovir, 59277-89-3; foscarnet, 4428-95-9; polyvinyl alcohol, 37380-95-3, 9002-89-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18671306_v5_n1_p26_Torres

Referencias:

  • Abriouel, H., Franz, C., Ben Omar, N., Galvez, A., Diversity and applications of Bacillus bacteriocins (2011) FEMS Microbiol Rev, 35, pp. 201-232
  • Albiol Matanic, V., Castilla, V., Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus (2004) Int J Antimicrob Agents, 23, pp. 382-389
  • Andersen, J., Osbakk, S., Vorland, L., Traavik, T., Gutteberg, T., Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts (2001) Antiviral Res, 51, pp. 141-149
  • Azwa, A., Barton, S., Aspects of herpes simplex virus: a clinical review (2009) J Fam Plann Reprod Health Care, 35, pp. 237-242
  • Babasaki, K., Takao, T., Shimonishi, Y., Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis (1985) J Biochem, 98, pp. 585-603
  • Baghian, A., Kousouglas, K., Role of the Na+ K+ pump in herpes simplex type 1-induced cell fusion: melittin causes specific reversion of syncytial mutants with the syn 1 mutation to syn+ (wild-type) phenotype (1993) Virology, 196, pp. 548-556
  • Balla, E., Dicks, L., Du Toit, M., Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecium BFE 1071 (2000) Appl Environ Microbiol, 66, pp. 1298-1304
  • Belaid, A., Aouni, M., Khelifa, R., Trabelsi, A., Jemmali, M., Hani, K., In vitro antiviral activity of dermaseptins against herpes simplex virus type 1 (2002) J Med Virol, 66, pp. 229-234
  • Berger, J., Houff, S., Neurological complications of herpes simplex virus type 2 infection (2008) Arch Neurol, 65, pp. 596-600
  • Celum, C., Wald, A., Lingappa, J., Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2 (2010) N Engl J Med, 362, pp. 427-439
  • Chilukuri, S., Rosen, T., Management of acyclovir-resistant herpes simplex virus (2003) Dermatol Clin, 21, pp. 311-320
  • Choong, K., Walker, N., Apel, A., Whitby, M., Aciclovir-resistant herpes keratitis (2010) Clin Experiment Ophthalmol, 38, pp. 309-313
  • Cintas, L., Rodriguez, J., Fernandez, M., Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum (1995) Appl Environ Microbiol, 61, pp. 2643-2648
  • Daher, K., Selsted, M., Lehrer, R., Direct inactivation of viruses by human granulocyte defensins (1986) J Virol, 60, pp. 1068-1074
  • Denizot, F., Lang, R., Rapid colorimetric assay for cell growth and survival (1986) J Inmunol Methods, 89, pp. 271-277
  • Duan, B., Yuan, X., Zhu, Y., A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning (2006) Eur Polymer J, 42, pp. 2013-2022
  • Efstathiou, S., Preston, C., Towards an understanding of the molecular basis of herpes simplex virus latency (2005) Virus Res, 111, pp. 108-119
  • Fatahzadeh, M., Schwartz, R., Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management (2007) J Am Acad Dermatol, 57, pp. 737-763
  • Field, H., Herpes simplex virus antiviral drug resistance-current trends and future prospects (2001) J Clin Virol, 21, pp. 261-269
  • Frasch, H., Dotson, G., Barbero, A., In vitro human epidermal penetration of 1-bromopropane (2011) J Toxicol Environ Health A, 74, pp. 1249-1260
  • Gupta, R., Warren, T., Wald, A., Genital herpes (2007) Lancet, 370, pp. 2127-2137
  • Håvard, J., Therapeutic approaches using host defense peptides to tackle herpes virus infections (2009) Viruses, 1, pp. 939-964
  • Heunis, T., Botes, M., Dicks, L., Encapsulation of Lactobacillus plantarum 423 and its bacteriocin in nanofibers (2010) Probiotics Antimicrob Prot, 2, pp. 46-51
  • Heunis, T., Bshena, O., Klumperman, B., Release of bacteriocins from nanofibers prepared with combinations of poly(D, L-lactide) (PDLLA) and poly(ethylene oxide) (PEO) (2011) Int J Mol Sci, 12, pp. 2158-2173
  • Heunis, T., Dicks, L., Nanofibers offer alternative ways to the treatment of skin infections (2010) J Biomed Biotechnol, , pii 510682
  • Hill, C., McKinney, E., Lowndes, C., Epidemiology of herpes simplex virus types 2 and 1 amongst men who have sex with men attending sexual health clinics in England and Wales: implications for HIV prevention and Management (2009) Euro Surveill, 14. , article 19418
  • Hook, E., Cannon, R., Nahmias, A., Herpes simplex virus infection as a risk factor for human immunodeficiency virus infection (1992) J Infect Dis, 165, pp. 251-255
  • Jenssen, H., Hamill, P., Hancock, R., Peptide antimicrobial agents (2006) Clin Microbiol Rev, 19, pp. 491-511
  • Johnston, C., Saracino, M., Kuntz, S., Standard-dose and high-dose daily antiviral therapy for short episodes of genital HSV-2 reactivation: three randomised, open-label, cross-over trials (2012) Lancet, 379, pp. 641-647
  • Lehrer, R., Daher, K., Ganz, T., Selsted, M., Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes (1985) J Virol, 54, pp. 467-472
  • Looker, K., Garnett, G., Schmid, G., An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection (2008) Bull World Health Organ, 86, pp. 805-812
  • Marx, R., Stein, T., Entian, K., Structure of the Bacillus subtillis peptide antibiotic subtilosin A determined by 1H NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (2001) J Protein Chem, 20, pp. 501-506
  • Morfin, F., Thouvenot, D., Herpes simplex virus resistance to antiviral drugs (2003) J Clin Virol, 26, pp. 29-37
  • Piret, J., Boivin, G., Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management (2011) Antimicrob Agents Chemother, 55, pp. 459-472
  • Pongtharangkul, T., Demirci, A., Evaluation of agar diffusion bioassay for nisin quantification (2004) Appl Microbiol Biotechnol, 65, pp. 268-272
  • Schulte, E., Sauerbrei, A., Hoffmann, D., Zimmer, C., Hemmer, B., Mühlau, M., Acyclovir resistance in herpes simplex encephalitis (2010) Ann Neurol, 67, pp. 830-833
  • Serkedjieva, J., Danova, S., Ivanova, I., Antiinfluenza virus activity of a bacteriocin produced by Lactobacillus delbrueckii (2000) Appl Biochem Biotechnol, 88, pp. 285-295
  • Shin, J., Cai, G., Weinberg, A., Frequency of acyclovir-resistant herpes simplex virus in clinical specimens and laboratory isolates (2001) J Clin Microbiol, 39, pp. 913-917
  • Shin, Y., Hohman, M., Brenner, M., Electrospinning: a whipping fluid jet generates submicron polymer fibers (2001) Appl Phys Lett, 78, pp. 1149-1151
  • Steiner, I., Kennedy, P., Pachner, A., The neurotropic herpes viruses: herpes simplex and varicella-zoster (2007) Lancet Neurol, 6, pp. 1015-1028
  • Sutyak, K., Anderson, R., Dover, S., Spermicidal activity of the safe natural antimicrobial peptide subtilosin (2008) Infect Dis Obstet Gynecol, 2008, p. 540758
  • Sutyak, K., Wirawan, R., Aroutcheva, A., Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens (2008) J Appl Microbiol, 104, pp. 1067-1074
  • Talarico, L., Castilla, V., Rámirez, J., Synergistic in vitro interactions between (22S,23S)-3β-bromo-5α22,23-trihydroxystigmastan-6-one and foscarnet against herpes simples virus type 1 (2006) Chemotherapy, 52, pp. 38-42
  • Tamamura, H., Otaka, A., Murakami, T., Interaction of an anti-HIV peptide, T22, with gp120 and CD4 (1996) Biochem Biophys Res Commun, 219, pp. 555-559
  • Thennarasu, S., Lee, D., Poon, A., Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A (2005) Chem Phys Lipids, 137, pp. 38-51
  • Todorov, S., Wachsman, M., Knoetze, H., An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4 V isolated from soybeans (2005) Int J Antimicrob Agents, 25, pp. 508-513
  • van Velzen, M., van Loenen, F., Meesters, R., Latent acyclovir-resistant herpes simplex virus type 1 in trigeminal ganglia of immunocompetent individuals (2012) J Infect Dis, 205, pp. 1539-1543
  • Wachinger, M., Kleinschmidt, A., Winder, D., Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression (1998) J Gen Virol, 79, pp. 731-740
  • Wachsman, M., Castilla, V., de Ruiz Holgado, A., Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro (2003) Antivir Res, 58, pp. 17-24
  • Wachsman, M., Farías, M., Takeda, E., Antiviral activity of enterocin CRL35 against herpesviruses (1999) Int J Antimicrob Agents, 12, pp. 293-299
  • Wachsman, M., López, E., Ramírez, J., Antiviral effect of brassinosteroids against herpes virus and arenaviruses (2000) Antiviral Chem Chemother, 11, pp. 71-77
  • Whitley, R., Roizman, B., Herpes simplex virus infections (2001) The Lancet, 357, pp. 1513-1518
  • Yarin, A., Koombhongse, S., Reneker, D., Taylor cone and jetting from liquid droplets in electrospinning of nanofibers (2001) J Appl Phys, 90, pp. 4836-4846
  • Yasin, B., Pang, M., Turner, J., Evaluation of the inactivation of infectious herpes simplex virus by host-defense peptides (2000) Eur J Clin Microbiol Dis, 19, pp. 187-194

Citas:

---------- APA ----------
Torres, N.I., Noll, K.S., Xu, S., Li, J., Huang, Q., Sinko, P.J., Wachsman, M.B.,..., Chikindas, M.L. (2013) . Safety, Formulation and In Vitro Antiviral Activity of the Antimicrobial Peptide Subtilosin Against Herpes Simplex Virus Type 1. Probiotics and Antimicrobial Proteins, 5(1), 26-35.
http://dx.doi.org/10.1007/s12602-012-9123-x
---------- CHICAGO ----------
Torres, N.I., Noll, K.S., Xu, S., Li, J., Huang, Q., Sinko, P.J., et al. "Safety, Formulation and In Vitro Antiviral Activity of the Antimicrobial Peptide Subtilosin Against Herpes Simplex Virus Type 1" . Probiotics and Antimicrobial Proteins 5, no. 1 (2013) : 26-35.
http://dx.doi.org/10.1007/s12602-012-9123-x
---------- MLA ----------
Torres, N.I., Noll, K.S., Xu, S., Li, J., Huang, Q., Sinko, P.J., et al. "Safety, Formulation and In Vitro Antiviral Activity of the Antimicrobial Peptide Subtilosin Against Herpes Simplex Virus Type 1" . Probiotics and Antimicrobial Proteins, vol. 5, no. 1, 2013, pp. 26-35.
http://dx.doi.org/10.1007/s12602-012-9123-x
---------- VANCOUVER ----------
Torres, N.I., Noll, K.S., Xu, S., Li, J., Huang, Q., Sinko, P.J., et al. Safety, Formulation and In Vitro Antiviral Activity of the Antimicrobial Peptide Subtilosin Against Herpes Simplex Virus Type 1. Probiotics Antimicrob. Proteins. 2013;5(1):26-35.
http://dx.doi.org/10.1007/s12602-012-9123-x