Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In salt marshes, the hydrodynamics and the availability of iron, organic matter and sulphate, influence the formation and/or dissolution of iron sulfides and iron oxyhydroxides. Therefore, they constitute key factors affecting the iron biogeochemical processes in these environments. The aim of this work is to evaluate the physico-chemical and mineralogical variations associated to iron biogeochemistry in palaeo and actual salt marshes in the area of influence of the Mar Chiquita coastal lagoon, Pampean Plain, Argentina. In soils of exhumed palaeo marshes, the iron contents are 56–95 μmol g−1, whereas these contents decrease to 36–75 μmol g−1 in actual marsh soils. The presence of framboidal and poliframboidal pyrites associated with gypsum, barite, calcite, halite and iron oxyhydroxides defines the conditions of the pedosedimentary sequences of the Holocene paleomarshes. Sequences of pyrite formation (sulfidization) and degradation (sulfuricization) were observed. These processes were evidenced by a sequential extraction, reflecting that the largest proportion of iron is in the form of crystalline iron oxides (28–76 %) and lepidocrocite (6–16 %); while the proportion associated with ferrihydrite and pyrite is low (0–9 and 1–17 %, respectively). These facts could be partly explained by the complex redox processes characteristic of these environments, such as aeration generated by the rhizosphere and intense bioturbation by invertebrates. These iron biomineralizations have been useful because they allow paleoenvironmental interpretations and characterization of paleomarshes, and environmental inferences related to the management of actual salt marshes. © 2016, Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Iron biogeochemistry in Holocene palaeo and actual salt marshes in coastal areas of the Pampean Plain, Argentina
Autor:Osterrieth, M.; Borrelli, N.; Alvarez, M.F.; Nóbrega, G.N.; Machado, W.; Ferreira, T.O.
Filiación:Instituto de Geología de Costas y del Cuaternario (IGCyC), FCEyN, UNMdP-CIC, CC 722 (7600), Mar Del Plata, Buenos Aires, Argentina
Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET-UNMdP, Mar Del Plata, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Departamento de Ciencia do solo, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Sao Paulo, Brazil
Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Niteroi, Brazil
Palabras clave:Biomineralization; Coastal wetlands; Framboidal and poliframboidal pyrites; Sequential extraction; Biogeochemistry; Biomineralization; Extraction; Iron; Positive ions; Pyrites; Soils; Wetlands; Biogeochemical process; Coastal lagoons; Coastal wetlands; Iron biogeochemistries; Iron oxyhydroxides; Physico-chemicals; Pyrite formation; Sequential extraction; Iron compounds; biogeochemistry; biomineralization; bioturbation; coastal wetland; Holocene; invertebrate; iron; mineralogy; paleoenvironment; physicochemical property; pyrite; saltmarsh; Argentina; Buenos Aires [Argentina]; Mar Chiquita Lagoon; Invertebrata
Año:2016
Volumen:75
Número:8
DOI: http://dx.doi.org/10.1007/s12665-016-5506-8
Título revista:Environmental Earth Sciences
Título revista abreviado:Environ. Earth Sci.
ISSN:18666280
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18666280_v75_n8_p_Osterrieth

Referencias:

  • Araújo, J.M.C., Jr., Otero, X.L., Marques, A.G.B., Nóbrega, G.N., Silva, J.R.F., Ferreira, T.O., Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani (2012) Geo Mar Lett, 32 (4), pp. 289-300
  • Berner, R.A., Sedimentary pyrite formation (1970) Am J Sci, 268, pp. 1-23
  • Berner, R.A., Burial of organic carbon and pyrite sulfur in modern ocean: its geochemical and environmental significance (1982) Am J Sci, 282, pp. 451-473
  • Berner, R.A., Sedimentary pyrite formation: an update (1984) Geochim et Cosmochim Acta, 48, pp. 605-615
  • Bianchi, T.S., (2006) Biogeochemistry of estuaries, , Oxford University Press, Oxford
  • Borrelli, N., Osterrieth, M., Marcovecchio, J., Interrelations of vegetal cover, silicophytolith content and pedogenesis of typical Argiudolls of the Pampean Plain, Argentina (2008) Catena, 75 (2), pp. 146-153
  • Bortolus, A., The austral cordgrass Spartina densiflora Brong: its taxonomy, biogeography and natural history (2006) J Biogeogr, 33, pp. 158-168
  • Burgos, J.J., Vidal, A.L., Los climas de la República Argentina, según la nueva clasificación de Tornthwaite (1951) Meteoros, 1 (1), pp. 3-32
  • Buurman, P., Classification of paleosols—a comment (1998) Quat Int, 51-52 (7-8), pp. 17-33
  • Duarte, C.M., Middelburg, J.J., Caraco, N., Major role of marine vegetation on the oceanic carbon cycle (2005) Biogeosciences, 2, pp. 1-8
  • Fanning, M., Rabenhorst, M., Burch, S., Islam, K., Tangren, S., Sulfides and sulfates (2002) Dixon and Schulze (eds). Soil mineralogy with enviromental application. SSSA Book Series, 7 (7), pp. 229-261
  • Fasano, J.L., Hernández, M.A., Isla, F.I., Schnack, E.J., Aspectos evolutivos y ambientales de la Laguna Mar Chiquita (Provincia de Buenos Aires, Argentina) (1982) Oceanologica Acta, 285-292 (Special Publication)
  • Ferreira, T.O., Vidal-Torrado, P., Otero, X.L., Macías, F., Are mangrove forest substrates sediments or soils? A case study in southeastern Brazil (2007) Catena, 70, pp. 79-91
  • Ferreira, T.O., Otero, X.L., Souza, V.S., Jr., Vidal-Torrado, P., Macías, F., Firme, L.P., Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo) (2010) J Soils Sediments, 10, pp. 995-1006
  • Ferreira, T.O., Nóbrega, G.N., Albuquerque, A.G.B.M., Sartor, L.R., Gomes, I.S., Artur, A.G., Otero, X.L., Pyrite as a proxy for the identification of former coastal lagoons in semiarid NE Brazil (2015) GeoMar Lett, 35, pp. 355-366
  • Fortin, D., Leppard, G.G., Tessier, A., Characteristics of lacustrine diagenetic iron oxyhydroxides (1993) Geochim Cosmochim Acta, 57, pp. 4391-4404
  • Frenguelli, J., Rasgos generales de la morfología y la geología de la Provincia de Buenos Aires (1950) Lemit, 2 (33), p. 72
  • Galehouse, J.S., Sedimentation analysis (1971) Procedures in sedimentary petrology, pp. 69-94. , Carver, (ed), Wiley Interscience, USA
  • Henderson, G.M., New oceanic proxies for paleoclimate (2002) Earth Planet Sci Lett, 203, pp. 1-13
  • Howarth, R.W., The ecological significance of sulfur in the energy of salt marsh and coastal marine sediments (1984) Biogeochemistry, 1, pp. 5-27
  • Huerta-Díaz, M.A., Morse, J.W., A quantitative method for determination of trace metals in sedimentary pyrite (1990) Mar Chem, 29, pp. 119-144
  • Ingram, R.L., Sieve analysis (1971) Procedures in sedimentary petrology, pp. 41-68. , Carver, (ed), Wiley Interscience, USA
  • Unidad de Recurso de Suelos: Mapa geomorfológico y de suelos de la Provincia de Buenos Aires. Escala 1:50.000 (1987) Castelar
  • Iribarne, O.O., Reserva de Biosfera Mar Chiquita: Características físicas, biológicas y ecológicas (2001) Ed Martín, , Mar del Plata, Argentina
  • Iribarne, O.O., Bortolus, A., Botto, F., Between-habitat differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata (1997) Mar Ecol Prog Ser, 155, pp. 132-145
  • Isacch, J.P., Costa, C.S.B., Rodríguez-Gallego, L., Conde, D., Escapa, M., Gagliardini, D.A., Iribarne, O.O., Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient in the south-west Atlantic coast (2006) J Biogeogr, 3, pp. 888-900
  • Isla, F.I., Fasano, J.L., Ferrero, L., Espinosa, M., Schnack, E.J., Late Cuaternary marine-estuarine sequences of the Southeastern coast of Buenos Aires Province, Argentina (1988) Quat S Am Ant Pen, 6, pp. 137-157
  • Koretsky, C.M., Miller, D., Seasonal influence of the needle rush Juncus roemerianus on saltmarsh porewater geochemistry (2008) Estuaries Coast, 31, pp. 70-84
  • Koretsky, C.M., Moore, C.M., Lowe, K.L., Meile, C., Dichristina, T.J., van Cappellen, P., Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA) (2003) Biogeochemistry, 64, pp. 179-203
  • Kostka, J.E., Luther, G.W., III, Partitioning and speciation of solid phase iron in saltmarsh sediments (1994) Geochim et Cosmochim Acta, 58 (7), pp. 1701-1710
  • Lovley, D.R., (2000) Environmental microbe-mineral interactions, , ASM Press, Washington
  • Lowenstam, H.A., Minerals formed by organisms (1981) Science, 211, pp. 1126-1131
  • Luther, G.W., III, Kostka, J.E., Church, T.M., Sulzberger, B., Stumm, W., Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively (1992) Mar Chem, 40, pp. 81-103
  • Marcovecchio, J., Freije, H., De Marco, S., Gavio, M.A., Ferrer, L., Andrade, S., Beltrame, O., Asteasuain, R., Seasonality of hydrographic variables in a coastal lagoon: Mar Chiquita, Argentina (2006) Aquat Conserv Mar Freshw Ecosyst, 16, pp. 335-347
  • Morse, J.W., Millero, F.J., Cornwell, J.C., Rickard, D., The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters (1987) Earth Sci Rev, 24, pp. 1-42
  • Nóbrega, G.N., Ferreira, T.O., Romero, R.E., Marques, A.G.B., Otero, X.L., Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents (2013) Environ Monit Assess, 185 (9), pp. 393-7407
  • Odum, E.P., (1970) Fundamentals of ecology, , Saunders, USA
  • Olivier, S., Escofet, A.M., Penchaszadeh, P., Orenzanz, J.M., Estudios ecológicos de la región estuarial de Mar Chiquita (Buenos Aires, Argentina). Las comunidades bentónicas (1972) Anal Com Inv Cient, 193 (5-6), pp. 237-262
  • Osterrieth, M., Pirita framboidal en secuencias sedimentarias del Holoceno tardío en Mar Chiquita, Buenos Aires, Argentina (1992) IV Reunión Argentina de Sedimentología, 2, pp. 73-80
  • Osterrieth, M., Paleosols and their relation to sea level changes during the Late Quaternary in Mar Chiquita, Buenos Aires, Argentina (1998) Quatern Int, 51-52, pp. 43-44
  • Osterrieth, M., Biomineralizaciones de hierro y calcio, su rol en procesos biogeoquímicos de secuencias sedimentarias del sudeste bonaerense (2005) XVI Congreso Geológico Argentino, III, pp. 255-262
  • Otero, X.L., Macias, F., Spatial variation in pyritization of trace metals in salt-marsh soils (2003) Biogeochemistry, 62, pp. 59-86
  • Otero, X.L., Ferreira, T.O., Vidal-Torrado, P., Macías, F., Spatial variation in pore water geochemistry in a mangrove system (Pai Matos island, Cananeia–Brazil) (2006) Appl Geochem, 21, pp. 2171-2186
  • Otero, X.L., Ferreira, T.O., Huerta-Díaz, M.A., Partiti, C.S.M., Souza, V., Jr., Vidal-Torrado, P., Macías, F., Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia–SP, Brazil) (2009) Geoderma, 148, pp. 318-335
  • Polastro, R.M., Authigenic kaolinite and associated pyrite in chalk of the Creaceous Niobrara formation, eastern Colorado (1981) J Sed Petrol, 5 (1), pp. 553-562
  • Pons, L.J., Jorgerius, A., A quantitative microscopical method of pyrite determination in soils (1965) Proc Microm Symp, pp. 401-409
  • Raiswell, R., Berner, R.A., Pyrite formation in euxinic and semi-euxinic sediments (1985) Am J Sci, 285, pp. 710-724
  • Roychoudhury, A., Kostka, J., Van Cappellen, P., Pyritization: a palaeoenvironmental and redox proxy reevaluated (2003) Estuar Coast Shelf Sci, 57, pp. 1183-1193
  • Schnack, E.J., Gardenal, M., (1979) Holocene transgressive deposits, Mar Chiquita lagoon coast, Buenos Aires province, Argentina, pp. 419-425. , Proc Int Symp Coast Evol Quat, Sao Paulo
  • Simonson, R.W., Outline of a generalizade theoryof soil genesis (1959) Soil Sci Soc Am Proc, 23, pp. 152-156
  • Soil Survey Staff, (1996) Keys to soil taxonomy, , United States Department of Agriculture, Washington
  • Spivak, E., Luppi, T., Bas, C., Iribarne, O., Cangrejos y camarones: las relaciones organismo-ambiente en las distintas fases del ciclo de vida (2001) Reserva de la biosfera Mar Chiquita: características físicas, biológicas y ecológicas, Ed Martin, pp. 129-152. , Mar del Plata, Argentina
  • Stribling, J., The relative importance of sulfate availability in the growth of Spartina alterniflora and Spartina cynosuroides (1997) Aquat Bot, 56, pp. 131-143
  • Taillefert, M., Neubhuber, S., Bristow, G., The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments (2007) Geochem Trans, 8, p. 6
  • Tessier, A., Campbell, P.G.C., Bisso, M., Sequencial extraction procedure for the speciation of particulate trace metals (1979) Anal Chem, 5, pp. 844-855
  • Tobias, C., Neubauer, S.C., Wolansky, E., Cahoon, D.R., Brinson, M.M., Salt marsh biogeochemistry—an overview (2009) Perillo GME, pp. 445-492. , Coastal wetlands. An integrated ecosystem approach, Elsevier, Amsterdam, The Netherlands
  • Tricart, J.L., Geomorfología de la Pampa Deprimida (1973) INTA, 12, p. 202
  • Vervoorst, F., La vegetación de la República Argentina Vll. Las comunidades vegetales de la depresión del Salado (Pcia de BsAs) (1967) INTA Serie Fitogeográfica, 7, p. 24
  • Viaroli, P., Laserre, P., Campostrini, P., Lagoons and coastal wetlands (2007) Hidrobiología, 577, pp. 1-3
  • Violante, R.A., Parker, G., Cavallotto, J.L., Evolución de las llanuras costeras del este bonaerense entre la bahía Samborombón y la laguna Mar Chiquita durante el Holoceno (2001) Revista de la Asociación Geológica Argentina, 56, pp. 51-66
  • Black, W., In: Black C (ed) Methods of Soil Analysis. American Society of Agronomy (1965) pp 1372–1375
  • Wilkin, R.T., Barnes, H.L., Brantley, S.L., The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions (1996) Geochim et Cosmochim Acta, 60 (20), pp. 3897-3912

Citas:

---------- APA ----------
Osterrieth, M., Borrelli, N., Alvarez, M.F., Nóbrega, G.N., Machado, W. & Ferreira, T.O. (2016) . Iron biogeochemistry in Holocene palaeo and actual salt marshes in coastal areas of the Pampean Plain, Argentina. Environmental Earth Sciences, 75(8).
http://dx.doi.org/10.1007/s12665-016-5506-8
---------- CHICAGO ----------
Osterrieth, M., Borrelli, N., Alvarez, M.F., Nóbrega, G.N., Machado, W., Ferreira, T.O. "Iron biogeochemistry in Holocene palaeo and actual salt marshes in coastal areas of the Pampean Plain, Argentina" . Environmental Earth Sciences 75, no. 8 (2016).
http://dx.doi.org/10.1007/s12665-016-5506-8
---------- MLA ----------
Osterrieth, M., Borrelli, N., Alvarez, M.F., Nóbrega, G.N., Machado, W., Ferreira, T.O. "Iron biogeochemistry in Holocene palaeo and actual salt marshes in coastal areas of the Pampean Plain, Argentina" . Environmental Earth Sciences, vol. 75, no. 8, 2016.
http://dx.doi.org/10.1007/s12665-016-5506-8
---------- VANCOUVER ----------
Osterrieth, M., Borrelli, N., Alvarez, M.F., Nóbrega, G.N., Machado, W., Ferreira, T.O. Iron biogeochemistry in Holocene palaeo and actual salt marshes in coastal areas of the Pampean Plain, Argentina. Environ. Earth Sci. 2016;75(8).
http://dx.doi.org/10.1007/s12665-016-5506-8