Artículo

Luján, E.; Otero, A.; Valenzuela, S.; Mocskos, E.; Steffenel, L.A.; Nesmachnow, S.; Nesmachnow S.; Hernandez Callejo L. "Cloud Computing for Smart Energy Management (CC-SEM Project)" (2019) 1st Ibero-American Congress of Smart Cities, ICSC-CITIES 2018. 978:116-131
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This paper describes the Cloud Computing for Smart Energy Management (CC-SEM) project, a research effort focused on building an integrated platform for smart monitoring, controlling, and planning energy consumption and generation in urban scenarios. The project integrates cutting-edge technologies (Big Data analysis, computational intelligence, Internet of Things, High Performance Computing and Cloud Computing), specific hardware for energy monitoring/controlling built within the project and explores their communication. The proposed platform considers the point of view of both citizens and administrators, providing a set of tools for controlling home devices (for end users), planning/simulating scenarios of energy generation (for energy companies and administrators), and shows some advances in communication infrastructure for transmitting the generated data. © 2019, Springer Nature Switzerland AG.

Registro:

Documento: Artículo
Título:Cloud Computing for Smart Energy Management (CC-SEM Project)
Autor:Luján, E.; Otero, A.; Valenzuela, S.; Mocskos, E.; Steffenel, L.A.; Nesmachnow, S.; Nesmachnow S.; Hernandez Callejo L.
Filiación:CSC-CONICET, Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires, Argentina
Facultad de Ingeniería, Universidad de Buenos Aires, Intendente Güiraldes 2160 - Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
Universidad de la República, Julio Herrera y Reissig 565, Montevideo, Uruguay
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Université de Reims-Champagne Ardenne, 9 Boulevard de la Paix, Reims, 51100, France
Palabras clave:Cloud computing; Energy efficiency; Smart cities; Cloud computing; Energy efficiency; Energy management; Energy utilization; Smart city; Communication infrastructure; Cutting edge technology; Energy generations; Energy monitoring; High performance computing; Integrated platform; Smart monitoring; Specific hardware; Green computing
Año:2019
Volumen:978
Página de inicio:116
Página de fin:131
DOI: http://dx.doi.org/10.1007/978-3-030-12804-3_10
Título revista:1st Ibero-American Congress of Smart Cities, ICSC-CITIES 2018
Título revista abreviado:Commun. Comput. Info. Sci.
ISSN:18650929
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18650929_v978_n_p116_Lujan

Referencias:

  • Turner, W., Doty, S., Energy Management Handbook (2007) The Fairmont Press, Lilburn
  • Towsend, A., (2013) Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia, , Ww Norton & Co
  • Soares, A., Antunes, C., Oliveira, C., Gomes, A., A multi-objective genetic approach to domestic load scheduling in an energy management system (2014) Energy, 77, pp. 144-152
  • Zakariazadeh, A., Jadid, S., Siano, P., Economic-environmental energy and reserve scheduling of smart distribution systems: A multiobjective mathematical programming approach (2014) Energy Convers. Manage., 78, pp. 151-164
  • Wahyuddin, Y., To What extent the grand lyon metropole can harness the smart meter project towards the governance of territorial climate energy plan (PCET) study case: Smart electric lyon project initiated by EDF [French Electric Utility Company] (2017) International Conference on Public Policy
  • Gupta, S., Reynolds, M., Patel, S., Electrisense: Single-point sensing using EMI for electrical event detection and classification in the home (2010) Proceedings of the 12Th ACM International Conference on Ubiquitous Computing, pp. 139-148. , pp
  • Spagnolli, A., Eco-feedback on the go: Motivating energy awareness (2011) Computer, 44 (5), pp. 38-45
  • Gamberini, L., Tailoring feedback to users’ actions in a persuasive game for household electricity conservation (2012) PERSUASIVE 2012, 7284, pp. 100-111. , https://doi.org/10.1007/978-3-642-31037-99, Bang, M., Ragnemalm, E.L. (eds.), LNCS, vol, Springer, Heidelberg
  • Costanza, E., Ramchurn, S., Jennings, N., Understanding domestic energy consumption through interactive visualisation: A field study (2012) Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 216-225. , pp
  • Rabaey, J., Ammer, M., da Silva, J., Patel, D., Roundy, S., Picoradio supports ad hoc ultra-low power wireless networking (2000) Computer, 33 (7), pp. 42-48
  • Niyato, D., Xiao, L., Wang, P., Machine-to-machine communications for home energy management system in smart grid (2011) IEEE Commun. Mag., 49 (4), pp. 53-59
  • Karnouskos, S., The cooperative Internet of Things enabled smart grid (2010) 14Th IEEE International Symposium on Consumer Electronics, pp. 7-10. , pp
  • Orsi, E., Nesmachnow, S., Iot for smart home energy planning (2017) XXIII Congreso Argentino De Ciencias De La Computación
  • Orsi, E., Nesmachnow, S., Smart home energy planning using IoT and the cloud (2017) 2017 IEEE URUCON, , IEEE
  • Kong, W., Dong, Z., Jia, Y., Hill, D., Xu, Y., Zhang, Y., Short-term residential load forecasting based on lstm recurrent neural network (2017) In: IEEE Transactions on Smart Grid Early Access
  • Amarasinghe, K., Marino, D., Manic, M., Deep neural networks for energy load forecasting (2017) IEEE 26Th International Symposium on Industrial Electronics, pp. 1483-1488. , pp
  • Dheeru, D., Karra Taniskidou, E., (2018) UCI Machine Learning Repository, , May
  • Hong, S., (2018) Individual Household Electric Power Consumption, , May
  • Zhou, K., Yang, S., Understanding household energy consumption behavior: The contribution of energy big data analytics (2016) Renew. Sustain. Energy Rev., 56, pp. 810-819
  • Holmgren, W., Andrews, R., Lorenzo, A., Stein, J., PVLIB Python 2015 (2015) 2015 IEEE 42Nd Photovoltaic Specialist Conference, pp. 1-5. , pp
  • Holmgren, W., Groenendyk, D., An open source solar power forecasting tool using PVLIB-python (2016) 2016 IEEE 43Rd Photovoltaic Specialists Conference, pp. 0972-0975. , pp
  • Smart Cities, , https://smartcities.ieee.org/, Accessed 02 Feb 2019
  • Ramírez, C.A., Barragán, R.C., García-Torales, G., Larios, V.M., Low-power device for wireless sensor network for smart cities (2016) 2016 IEEE MTT-S Latin America Microwave Conference (LAMC), pp. 1-3. , pp., December
  • Wang, Y.E., A primer on 3G pp narrowband internet of things (2017) IEEE Commun. Mag., 55, pp. 117-123
  • Yu, C., Yu, L., Wu, Y., He, Y., Lu, Q., Uplink scheduling and link adaptation for narrowband internet of things systems (2017) IEEE Access, 5, pp. 1724-1734

Citas:

---------- APA ----------
Luján, E., Otero, A., Valenzuela, S., Mocskos, E., Steffenel, L.A., Nesmachnow, S., Nesmachnow S.,..., Hernandez Callejo L. (2019) . Cloud Computing for Smart Energy Management (CC-SEM Project). 1st Ibero-American Congress of Smart Cities, ICSC-CITIES 2018, 978, 116-131.
http://dx.doi.org/10.1007/978-3-030-12804-3_10
---------- CHICAGO ----------
Luján, E., Otero, A., Valenzuela, S., Mocskos, E., Steffenel, L.A., Nesmachnow, S., et al. "Cloud Computing for Smart Energy Management (CC-SEM Project)" . 1st Ibero-American Congress of Smart Cities, ICSC-CITIES 2018 978 (2019) : 116-131.
http://dx.doi.org/10.1007/978-3-030-12804-3_10
---------- MLA ----------
Luján, E., Otero, A., Valenzuela, S., Mocskos, E., Steffenel, L.A., Nesmachnow, S., et al. "Cloud Computing for Smart Energy Management (CC-SEM Project)" . 1st Ibero-American Congress of Smart Cities, ICSC-CITIES 2018, vol. 978, 2019, pp. 116-131.
http://dx.doi.org/10.1007/978-3-030-12804-3_10
---------- VANCOUVER ----------
Luján, E., Otero, A., Valenzuela, S., Mocskos, E., Steffenel, L.A., Nesmachnow, S., et al. Cloud Computing for Smart Energy Management (CC-SEM Project). Commun. Comput. Info. Sci. 2019;978:116-131.
http://dx.doi.org/10.1007/978-3-030-12804-3_10