Abstract:
This paper describes the Cloud Computing for Smart Energy Management (CC-SEM) project, a research effort focused on building an integrated platform for smart monitoring, controlling, and planning energy consumption and generation in urban scenarios. The project integrates cutting-edge technologies (Big Data analysis, computational intelligence, Internet of Things, High Performance Computing and Cloud Computing), specific hardware for energy monitoring/controlling built within the project and explores their communication. The proposed platform considers the point of view of both citizens and administrators, providing a set of tools for controlling home devices (for end users), planning/simulating scenarios of energy generation (for energy companies and administrators), and shows some advances in communication infrastructure for transmitting the generated data. © 2019, Springer Nature Switzerland AG.
Registro:
Documento: |
Artículo
|
Título: | Cloud Computing for Smart Energy Management (CC-SEM Project) |
Autor: | Luján, E.; Otero, A.; Valenzuela, S.; Mocskos, E.; Steffenel, L.A.; Nesmachnow, S.; Nesmachnow S.; Hernandez Callejo L. |
Filiación: | CSC-CONICET, Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires, Argentina Facultad de Ingeniería, Universidad de Buenos Aires, Intendente Güiraldes 2160 - Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina Universidad de la República, Julio Herrera y Reissig 565, Montevideo, Uruguay Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina Université de Reims-Champagne Ardenne, 9 Boulevard de la Paix, Reims, 51100, France
|
Palabras clave: | Cloud computing; Energy efficiency; Smart cities; Cloud computing; Energy efficiency; Energy management; Energy utilization; Smart city; Communication infrastructure; Cutting edge technology; Energy generations; Energy monitoring; High performance computing; Integrated platform; Smart monitoring; Specific hardware; Green computing |
Año: | 2019
|
Volumen: | 978
|
Página de inicio: | 116
|
Página de fin: | 131
|
DOI: |
http://dx.doi.org/10.1007/978-3-030-12804-3_10 |
Título revista: | 1st Ibero-American Congress of Smart Cities, ICSC-CITIES 2018
|
Título revista abreviado: | Commun. Comput. Info. Sci.
|
ISSN: | 18650929
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18650929_v978_n_p116_Lujan |
Referencias:
- Turner, W., Doty, S., Energy Management Handbook (2007) The Fairmont Press, Lilburn
- Towsend, A., (2013) Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia, , Ww Norton & Co
- Soares, A., Antunes, C., Oliveira, C., Gomes, A., A multi-objective genetic approach to domestic load scheduling in an energy management system (2014) Energy, 77, pp. 144-152
- Zakariazadeh, A., Jadid, S., Siano, P., Economic-environmental energy and reserve scheduling of smart distribution systems: A multiobjective mathematical programming approach (2014) Energy Convers. Manage., 78, pp. 151-164
- Wahyuddin, Y., To What extent the grand lyon metropole can harness the smart meter project towards the governance of territorial climate energy plan (PCET) study case: Smart electric lyon project initiated by EDF [French Electric Utility Company] (2017) International Conference on Public Policy
- Gupta, S., Reynolds, M., Patel, S., Electrisense: Single-point sensing using EMI for electrical event detection and classification in the home (2010) Proceedings of the 12Th ACM International Conference on Ubiquitous Computing, pp. 139-148. , pp
- Spagnolli, A., Eco-feedback on the go: Motivating energy awareness (2011) Computer, 44 (5), pp. 38-45
- Gamberini, L., Tailoring feedback to users’ actions in a persuasive game for household electricity conservation (2012) PERSUASIVE 2012, 7284, pp. 100-111. , https://doi.org/10.1007/978-3-642-31037-99, Bang, M., Ragnemalm, E.L. (eds.), LNCS, vol, Springer, Heidelberg
- Costanza, E., Ramchurn, S., Jennings, N., Understanding domestic energy consumption through interactive visualisation: A field study (2012) Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 216-225. , pp
- Rabaey, J., Ammer, M., da Silva, J., Patel, D., Roundy, S., Picoradio supports ad hoc ultra-low power wireless networking (2000) Computer, 33 (7), pp. 42-48
- Niyato, D., Xiao, L., Wang, P., Machine-to-machine communications for home energy management system in smart grid (2011) IEEE Commun. Mag., 49 (4), pp. 53-59
- Karnouskos, S., The cooperative Internet of Things enabled smart grid (2010) 14Th IEEE International Symposium on Consumer Electronics, pp. 7-10. , pp
- Orsi, E., Nesmachnow, S., Iot for smart home energy planning (2017) XXIII Congreso Argentino De Ciencias De La Computación
- Orsi, E., Nesmachnow, S., Smart home energy planning using IoT and the cloud (2017) 2017 IEEE URUCON, , IEEE
- Kong, W., Dong, Z., Jia, Y., Hill, D., Xu, Y., Zhang, Y., Short-term residential load forecasting based on lstm recurrent neural network (2017) In: IEEE Transactions on Smart Grid Early Access
- Amarasinghe, K., Marino, D., Manic, M., Deep neural networks for energy load forecasting (2017) IEEE 26Th International Symposium on Industrial Electronics, pp. 1483-1488. , pp
- Dheeru, D., Karra Taniskidou, E., (2018) UCI Machine Learning Repository, , May
- Hong, S., (2018) Individual Household Electric Power Consumption, , May
- Zhou, K., Yang, S., Understanding household energy consumption behavior: The contribution of energy big data analytics (2016) Renew. Sustain. Energy Rev., 56, pp. 810-819
- Holmgren, W., Andrews, R., Lorenzo, A., Stein, J., PVLIB Python 2015 (2015) 2015 IEEE 42Nd Photovoltaic Specialist Conference, pp. 1-5. , pp
- Holmgren, W., Groenendyk, D., An open source solar power forecasting tool using PVLIB-python (2016) 2016 IEEE 43Rd Photovoltaic Specialists Conference, pp. 0972-0975. , pp
- Smart Cities, , https://smartcities.ieee.org/, Accessed 02 Feb 2019
- Ramírez, C.A., Barragán, R.C., García-Torales, G., Larios, V.M., Low-power device for wireless sensor network for smart cities (2016) 2016 IEEE MTT-S Latin America Microwave Conference (LAMC), pp. 1-3. , pp., December
- Wang, Y.E., A primer on 3G pp narrowband internet of things (2017) IEEE Commun. Mag., 55, pp. 117-123
- Yu, C., Yu, L., Wu, Y., He, Y., Lu, Q., Uplink scheduling and link adaptation for narrowband internet of things systems (2017) IEEE Access, 5, pp. 1724-1734
Citas:
---------- APA ----------
Luján, E., Otero, A., Valenzuela, S., Mocskos, E., Steffenel, L.A., Nesmachnow, S., Nesmachnow S.,..., Hernandez Callejo L.
(2019)
. Cloud Computing for Smart Energy Management (CC-SEM Project). 1st Ibero-American Congress of Smart Cities, ICSC-CITIES 2018, 978, 116-131.
http://dx.doi.org/10.1007/978-3-030-12804-3_10---------- CHICAGO ----------
Luján, E., Otero, A., Valenzuela, S., Mocskos, E., Steffenel, L.A., Nesmachnow, S., et al.
"Cloud Computing for Smart Energy Management (CC-SEM Project)"
. 1st Ibero-American Congress of Smart Cities, ICSC-CITIES 2018 978
(2019) : 116-131.
http://dx.doi.org/10.1007/978-3-030-12804-3_10---------- MLA ----------
Luján, E., Otero, A., Valenzuela, S., Mocskos, E., Steffenel, L.A., Nesmachnow, S., et al.
"Cloud Computing for Smart Energy Management (CC-SEM Project)"
. 1st Ibero-American Congress of Smart Cities, ICSC-CITIES 2018, vol. 978, 2019, pp. 116-131.
http://dx.doi.org/10.1007/978-3-030-12804-3_10---------- VANCOUVER ----------
Luján, E., Otero, A., Valenzuela, S., Mocskos, E., Steffenel, L.A., Nesmachnow, S., et al. Cloud Computing for Smart Energy Management (CC-SEM Project). Commun. Comput. Info. Sci. 2019;978:116-131.
http://dx.doi.org/10.1007/978-3-030-12804-3_10