Artículo

Marroig, L.; Riverón, C.; Nesmachnow, S.; Mocskos, E.; Navaux P.O.A.; Osthoff C.; Dias P.L.S.; Hernandez C.J.B. "Cloud computing for fluorescence correlation spectroscopy simulations" (2015) 2nd Latin American Conference on High Performance Computing, CARLA 2015. 565:34-49
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Fluorescence microscopy techniques and protein labeling set an inflection point in the way cells are studied. The fluorescence correlation spectroscopy is extremely useful for quantitatively measuring the movement of molecules in living cells. This article presents the design and implementation of a system for fluorescence analysis through stochastic simulations using distributed computing techniques over a cloud infrastructure. A highly scalable architecture, accessible to many users, is proposed for studying complex cellular biological processes. A MapReduce algorithm that allows the parallel execution of multiple simulations is developed over a distributed Hadoop cluster using the Microsoft Azure cloud platform. The experimental analysis shows the correctness of the implementation developed and its utility as a tool for scientific computing in the cloud. © Springer International Publishing Switzerland 2015.

Registro:

Documento: Artículo
Título:Cloud computing for fluorescence correlation spectroscopy simulations
Autor:Marroig, L.; Riverón, C.; Nesmachnow, S.; Mocskos, E.; Navaux P.O.A.; Osthoff C.; Dias P.L.S.; Hernandez C.J.B.
Filiación:Universidad de la República, Montevideo, Uruguay
Departamento de Computación, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Simulación Computacional p/Aplic. Tecnológicas/CSC-CONICET, Godoy Cruz 2390, Buenos Aires, C1425FQD, Argentina
Palabras clave:Cloud; Fluorescence analysis; Scientific computing; Clouds; Fluorescence; Fluorescence microscopy; Fluorescence spectroscopy; Natural sciences computing; Spectroscopic analysis; Stochastic models; Stochastic systems; Windows operating system; Cloud infrastructures; Design and implementations; Experimental analysis; Fluorescence analysis; Fluorescence Correlation Spectroscopy; Parallel executions; Scalable architectures; Stochastic simulations; Distributed computer systems
Año:2015
Volumen:565
Página de inicio:34
Página de fin:49
DOI: http://dx.doi.org/10.1007/978-3-319-26928-3_3
Título revista:2nd Latin American Conference on High Performance Computing, CARLA 2015
Título revista abreviado:Commun. Comput. Info. Sci.
ISSN:18650929
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18650929_v565_n_p34_Marroig

Referencias:

  • Angiolini, J., Plachta, N., Mocskos, E., Levi, V., Exploring the dynamics of cell processes through simulations of fluorescence microscopy experiments (2015) Biophys. J, 108, pp. 2613-2618
  • Bartol, T., Land, B., Salpeter, E., Salpeter, M., Monte carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction (1991) Biophys. J, 59 (6), pp. 1290-1307
  • Buyya, R., Broberg, J., Goscinski, A., (2011) Cloud Computing: Principles and Paradigms, , Wiley, New York
  • Da Silva, M., Nesmachnow, S., Geier, M., Mocskos, E., Angiolini, J., Levi, V., Cristobal, A., Efficient fluorescence microscopy analysis over a volunteer grid/cloud infrastructure (2014) CARLA 2014. CCIS, 485, pp. 113-127. , Hernández, G., Barrios Hernández, C.J., Díaz, G., García Garino, C., Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez, M. (eds.), Springer, Heidelberg
  • Elson, E.L., Fluorescence correlation spectroscopy: Past, present, future (2011) Biophys. J, 101 (12), pp. 2855-2870
  • García, S., Iturriaga, S., Nesmachnow, S., Scientific computing in the Latin America-Europe GISELA grid infrastructure (2011) Proceedings of the 4th High Performance Computing Latin America Symposium, pp. 48-62
  • Jakovits, P., Srirama, S., Adapting scientific applications to cloud by using distributed computing frameworks (2013) IEEE International Symposium on Cluster Computing and the Grid, pp. 164-167
  • Kerr, R., Bartol, T., Kaminsky, B., Dittrich, M., Chang, J., Baden, S., Sejnowski, T., Stiles, J., Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces (2008) SIAM J. Sci. Comput, 30 (6), pp. 3126-3149
  • Li, H., (2009) Introducing Windows Azure, , Apress, Berkely
  • Richman, R., Zirnhelt, H., Fix, S., Large-scale building simulation using cloud computing for estimating lifecycle energy consumption (2014) Can. J. Civ. Eng, 41, pp. 252-262
  • Stiles, J.R., Bartol, T.M., (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell, Chap 4, pp. 87-127. , CRC Press
  • Stiles, J.R., Van Helden, D., Bartol, T.M., Salpeter, E.E., Salpeter, M.M., Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle (1996) Proc. Natl. Acad. Sci. USA, 93 (12), pp. 5747-5752
  • Velte, T., Velte, A., Elsenpeter, R., (2009) Cloud Computing, A Practical Approach, , McGraw-Hill Education, New YorkA4 -

Citas:

---------- APA ----------
Marroig, L., Riverón, C., Nesmachnow, S., Mocskos, E., Navaux P.O.A., Osthoff C., Dias P.L.S.,..., Hernandez C.J.B. (2015) . Cloud computing for fluorescence correlation spectroscopy simulations. 2nd Latin American Conference on High Performance Computing, CARLA 2015, 565, 34-49.
http://dx.doi.org/10.1007/978-3-319-26928-3_3
---------- CHICAGO ----------
Marroig, L., Riverón, C., Nesmachnow, S., Mocskos, E., Navaux P.O.A., Osthoff C., et al. "Cloud computing for fluorescence correlation spectroscopy simulations" . 2nd Latin American Conference on High Performance Computing, CARLA 2015 565 (2015) : 34-49.
http://dx.doi.org/10.1007/978-3-319-26928-3_3
---------- MLA ----------
Marroig, L., Riverón, C., Nesmachnow, S., Mocskos, E., Navaux P.O.A., Osthoff C., et al. "Cloud computing for fluorescence correlation spectroscopy simulations" . 2nd Latin American Conference on High Performance Computing, CARLA 2015, vol. 565, 2015, pp. 34-49.
http://dx.doi.org/10.1007/978-3-319-26928-3_3
---------- VANCOUVER ----------
Marroig, L., Riverón, C., Nesmachnow, S., Mocskos, E., Navaux P.O.A., Osthoff C., et al. Cloud computing for fluorescence correlation spectroscopy simulations. Commun. Comput. Info. Sci. 2015;565:34-49.
http://dx.doi.org/10.1007/978-3-319-26928-3_3