Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper we approximate a Kantorovich potential and a transport density for the mass transport problem of two measures (with the transport cost given by a Finsler distance), by taking limits, as p goes to infinity, to a family of variational problems of p-Laplacian type. We characterize the Euler-Lagrange equation associated to the variational Kantorovich problem. We also obtain different characterizations of the Kantorovich potentials and a Benamou-Brenier formula for the transport problem. © 2017 Walter de Gruyter GmbH.

Registro:

Documento: Artículo
Título:Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations
Autor:Igbida, N.; Mazón, J.M.; Rossi, J.D.; Toledo, J.
Filiación:Institut de recherche, XLIM-DMI, UMR-CNRS 6172, Université de Limoges, France
Departament d'Anàlisi Matemàtica, Universitat de València, Valencia, Spain
Dpto. de Matemática, FCEyN, UBA, Ciudad Universitaria - Pab 1, Buenos Aires, 1428), Argentina
Palabras clave:Finsler metric p-Laplacian equation; Mass transport; Monge-Kantorovich problems
Año:2018
Volumen:11
Número:1
Página de inicio:1
Página de fin:28
DOI: http://dx.doi.org/10.1515/acv-2015-0052
Título revista:Advances in Calculus of Variations
Título revista abreviado:Adv. Calc. Var.
ISSN:18648258
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18648258_v11_n1_p1_Igbida

Referencias:

  • Ambrosio, L., Lecture notes on optimal transport problems (2003) Mathematical Aspects of Evolving Interfaces, pp. 1-52. , (Funchal 2000), Lecture Notes in Math. 1812, Springer, Berlin
  • Ambrosio, L., Fusco, N., Pallara, D., (2000) Functions of Bounded Variation and Free Discontinuity Problems, , Oxford Math. Monogr., Clarendon Press, Oxford
  • Ambrosio, L., Gigli, N., Savaré, G., (2005) Gradient Flows in Metric Spaces and in the Space of Probability Measures, , Lect. in Math. ETH Zürich, Birkhäuser, Basel
  • Ambrosio, L., Pratelli, A., Existence and stability results in the L1 theory of optimal transportation (2003) Optimal Transportation and Applications, pp. 123-160. , (Martina Franca 2001), Lecture Notes in Math. 1813, Springer, Berlin
  • Anzellotti, G., The Euler equation for functionals with linear growth (1985) Trans. Amer. Math. Soc., 290, pp. 483-501
  • Bao, D., Chen, S.-S., Shen, Z., (2000) An Introduction to Riemann-Finsler Geometry, , Springer, New York
  • Belloni, M., Ferone, V., Kawohl, B., Inequalities, I., Wulff shape and related questions for nonlinear elliptic operator (2003) Z. Angew. Math. Phys., 54, pp. 771-783
  • Benamou, J.D., Brenier, Y., A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem (2000) Numer. Math., 84, pp. 375-393
  • Bernard, P., Buffoni, B., The Monge problem for supercritical Mañé potentials on compact manifolds (2006) Adv. Math., 207, pp. 691-706
  • Bouchitté, G., Buttazzo, G., De Pascale, L.A., A p-Laplacian approximation for some mass optimization problems (2003) J. Optim. Theory Appl., 118, pp. 1-25
  • Bouchitté, G., Buttazzo, G., De Pascale, L.A., The Monge-Kantorovich problem for distributions and applications (2010) J. Convex Anal., 17, pp. 925-943
  • Bouchitté, G., Buttazzo, G., Seppercher, P., Energy with respect to a measure and applications to low dimensional structures (1997) Calc. Var. Partial Differential Equations, 5, pp. 37-54
  • Bouchitté, G., Champion, T., Jimenez, C., Completion of the space of measures in the Kantorovich norm (2005) Riv. Math. Univ. Parma (7), 4, pp. 127-139
  • Brenier, Y., Extended monge-kantorovich theory (2003) Optimal Transportation and Applications, pp. 91-121. , (Martina Franca 2001), Lecture Notes in Math. 1813, Springer, Berlin
  • Brezis, H., (2011) Functional Analysis, Sobolev Spaces and Partial Differential Equations, , Springer, New York
  • De Pascale, L.A., Pratelli, A., Regularity properties for Monge transport density and for solutions of some shape optimization problem (2002) Cal. Var. Partial Differential Equations, 14, pp. 249-274
  • Evans, L.C., Partial differential equations and Monge-Kantorovich mass transfer (1999) Current Developments in Mathematics, pp. 65-126. , (Cambridge 1997), International Press, Boston
  • Evans, L.C., Gangbo, W., Differential equations methods for the Monge-Kantorovich mass transfer problem (1999) Mem. Amer. Math. Soc., 137 (653), pp. 1-66
  • Feldman, M., McCann, R.J., Monge's transport problem on a Riemannian manifold (2002) Trans. Amer. Math. Soc., 354, pp. 1667-1697
  • Figalli, A., Monge's problem on a non-compact manifold (2007) Rend. Semin. Mat. Univ. Padova, 117, pp. 147-166
  • Hebey, E., (1996) Sobolev Spaces on Riemannian Manifolds, , Lecture Notes in Math. 1635, Springer, Berlin
  • Igbida, N., Mazón, J.M., Rossi, J.D., Toledo, J., A Monge-Kantorovich mass transport problem for a discrete distance (2011) J. Funct. Anal., 260, pp. 3494-3534
  • Mazón, J.M., Rossi, J.D., Toledo, J., An optimal matching problem for the Euclidean distance (2014) SIAM J. Math. Anal., 46, pp. 233-255
  • Mazón, J.M., Rossi, J.D., Toledo, J., An optimal transportation problem with a cost given by the Euclidean distance plus import/export taxes on the boundary (2014) Rev. Mat. Iberoam., 30, pp. 277-308
  • Mazón, J.M., Rossi, J.D., Toledo, J., Mass transport problems for the Euclidean distance obtained as limits of p-Laplacian type problems with obstacles (2014) J. Differential Equations, 256, pp. 3208-3244
  • Mazón, J.M., Rossi, J.D., Toledo, J., Mass transport problems obtained as limits of p-Laplacian type problems with spatial dependence (2014) Adv. Nonlinear Anal., 3, pp. 133-140
  • Ohta, S., Finsler interpolation inequalities (2009) Calc. Var. Partial Differential Equations, 36, pp. 211-249
  • Ohta, S., Sturm, K.-T., Heat flow on Finsler manifolds (2009) Comm. Pure Appl. Math., 62, pp. 1386-1433
  • Pratelli, A., Equivalence between some definitions for the optimal mass transport problem and for the transport density on manifolds (2005) Ann. Mat. Pura Appl. (4), 184, pp. 215-238
  • Santambrogio, F., Absolute continuity and summability of transport densities: Simpler proofs and new estimates (2009) Calc. Var. Partial Differential Equations, 36, pp. 343-354
  • Shen, Z., (2001) Lectures on Finsler Geometry, , World Scientific, Singapore
  • Spector, D., Simple proofs of some results of Reshetnyak (2011) Proc. Amer. Math. Soc., 139, pp. 1681-1690
  • Villani, C., Topics in optimal transportation (2003) Grad. Stud. Math., 58. , American Mathematical Society, Providence
  • Villani, C., Optimal transport. Old and new (2009) Grundlehren Math. Wiss., 338. , Springer, Berlin

Citas:

---------- APA ----------
Igbida, N., Mazón, J.M., Rossi, J.D. & Toledo, J. (2018) . Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations. Advances in Calculus of Variations, 11(1), 1-28.
http://dx.doi.org/10.1515/acv-2015-0052
---------- CHICAGO ----------
Igbida, N., Mazón, J.M., Rossi, J.D., Toledo, J. "Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations" . Advances in Calculus of Variations 11, no. 1 (2018) : 1-28.
http://dx.doi.org/10.1515/acv-2015-0052
---------- MLA ----------
Igbida, N., Mazón, J.M., Rossi, J.D., Toledo, J. "Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations" . Advances in Calculus of Variations, vol. 11, no. 1, 2018, pp. 1-28.
http://dx.doi.org/10.1515/acv-2015-0052
---------- VANCOUVER ----------
Igbida, N., Mazón, J.M., Rossi, J.D., Toledo, J. Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations. Adv. Calc. Var. 2018;11(1):1-28.
http://dx.doi.org/10.1515/acv-2015-0052