Artículo

Ramos, J.A.; Serrano, E.; Tercjak, A.; Salgueiro, W.; Goyanes, S.; Mondragon, I. "PALS study of epoxy matrices: Self-assembly of block copolymers and its capability for nanostructuring thermosetting systems" (2007) 14th International Conference on Positron Annihilation, ICPA 14. 4(10):3690-3699
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The free volume in epoxy systems based on diglycidyl ether of bisphenol-A (DGEBA) fully cured with aminic hardeners having different chemical structures has been studied by means of positron annihilation lifetimes spectroscopy. The results are compared with those obtained from the analysis of the macroscopic specific volume changes by using pressure-volume-temperature (PVT) experimental technique. An excellent correlation between the volumes measured at macro and nanoscales was found for the epoxy systems fully cured with aminic hardeners. On the other hand, a systematic study on the dependence of the volumes at nano-scale in epoxy systems cured with two selected aminic hardeners at different pre-cure temperatures revealed that the pre-cure temperature, as well as, the structure of the hardeners governs the packing of the molecular chains of the epoxy network and its influence in the volume and number density of the nanoholes. In the second part of this work, a systematic study of the effect of several epoxidation degrees of butadiene block in a commercial polystyrene-polybutadiene star block copolymer (SB) has been carried out to control nano-ordering in thermosetting epoxy systems. For this purpose, blends of DGEBA cured with 4,4′-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA) containing 30 wt % neat SB and several epoxidized SB star block copolymers have been synthesized. At low epoxidation degrees, interactions with the epoxy matrix are not sufficiently favorable and macroscopic phase separation takes place, leading to a phase-inverted morphology where the block copolymer may become the matrix. For high epoxidation degrees, however, nanostructured thermosetting systems, being the epoxy-rich phase the matrix of the blends, have been obtained. It has been proved that, in blends containing SepB61 and SepB76 star block copolymers, the copolymer self-assembles into a well-defined hexagonally ordered structure, where cylinders are formed by PS arranged in an epoxy matrix containing both epoxidized and non-epoxidized butadiene units. SAXS experiments show that there are not strong differences in the long spacing between the different systems because the repeated distance between PS cylinders for all the blends is around 41-42 nm. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA.

Registro:

Documento: Artículo
Título:PALS study of epoxy matrices: Self-assembly of block copolymers and its capability for nanostructuring thermosetting systems
Autor:Ramos, J.A.; Serrano, E.; Tercjak, A.; Salgueiro, W.; Goyanes, S.; Mondragon, I.
Ciudad:Hamilton, ON
Filiación:Materials and Technologies' Group, Escuela Politécnica, University of the Basque Country, Pza Europa 1, 20018 Donostia/San Sebastián, Spain
IFIMAT, UN Centro, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil, Argentina
LPyMC, Departamento de Física, Pabellon I, 1428 Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Tecnológicas, Argentina
Palabras clave:Chemical structures; Cure temperature; Diglycidyl ether of bisphenol-A; Epoxy matrices; Epoxy networks; Epoxy systems; Experimental techniques; International conferences; Macroscopic phase separation; Molecular chains; Nano scaling; Nano-holes; Nano-structured; Nano-structuring; Nanoscales; Number densities; Ordered structures; Polybutadiene; Positron annihilation lifetimes; Pressure-Volume-Temperature; Rich phase; Self- assemblies; Specific volume; Star-block copolymers; Systematic study; Block copolymers; Butadiene; Control systems; Copolymerization; Copolymers; Curing; Cylinders (shapes); Drying; Ethers; Free volume; Matrix algebra; Nanostructured materials; Nanotechnology; Organic compounds; Organic polymers; Painting; Phase separation; Phenols; Plastic products; Polystyrenes; Positron annihilation; Positron annihilation spectroscopy; Positrons; Self assembly; Separation; Superconducting materials; Polymers
Año:2007
Volumen:4
Número:10
Página de inicio:3690
Página de fin:3699
DOI: http://dx.doi.org/10.1002/pssc.200675749
Título revista:14th International Conference on Positron Annihilation, ICPA 14
Título revista abreviado:Phys. Status Solidi C Curr. Top. Solid State Phys.
ISSN:18626351
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18626351_v4_n10_p3690_Ramos

Referencias:

  • Yang, L., Hristov, H.A., Yee, A.F., Gidley, D.W., Bauchiere, D., Halary, J.L., Monnerie, L., (1995) Polymer, 36, p. 3997
  • Sindt, O., Perez, J., Gerard, J.F., (1996) Polymer, 37, p. 2989
  • Mayr, A.E., Cook, W.D., Edward, G.H., (1998) Polymer, 39, p. 3719
  • Jefrey, K., Pethrick, R., (1994) Eur. Polym. J, 30, p. 153
  • Soles, C.L., Chang, F., Bolan, A., Hristov, H.A., Gidley, D., Yee, A.F., (1998) J. Polym. Sci. B, 36, p. 3035
  • Wang, B., Gong, W., Liu, W.H., Wang, Z.F., Qi, N., Li, X.W., Li, S.J., (2003) Polymer, 44, p. 4047
  • Goyanes, S., Rubiolo, G., Marzocca, A., Salgueiro, W., Somoza, A., Consolati, G., Mondragon, I., (2003) Polymer, 44, p. 3193
  • Maurer, F.H.J., Schmidt, M., (2000) Radiat. Phys. Chem, 58, p. 509
  • Dlubek, G., Bodarenko, V., Pionteck, J., Supej, M., Wutzler, A., Krause-Rehberg, R., (2003) Polymer, 44, p. 1921
  • Goyanes, S., Salgueiro, W., Somoza, A., Ramos, J.A., Mondragon, I., (2004) Polymer, 45, p. 6691
  • Somoza, A., Salgueiro, W., Goyanes, S., Ramos, J.A., Mondragon, I., (2006) Polymer, 47, p. 5066
  • Grubbs, R.B., Dean, J.M., Bates, F.S., (2001) Macromolecules, 34, p. 8593
  • Hillmyer, M.A., Lipic, P.M., Hadjuk, D.A., Almdal, K., Bates, F.S.J., (1997) J. Am. Chem. Soc, 119, p. 2749
  • Lipic, P.M., Bates, F.S., Hillmyer, M.A., (1998) J. Am. Chem. Soc, 120, p. 8963
  • Mijovic, J., Shen, M., Sy, J.W., Mondragon, I., (2000) Macromolecules, 33, p. 5235
  • Guo, Q., Thomann, R., Gronski, W., Thurn-Albrecht, T., (2002) Macromolecules, 35, p. 3133
  • Guo, Q., Thomann, R., Gronski, W., Staneva, R., Ivanova, R., Stühn, B., (2003) Macromolecules, 36, p. 3635
  • Ritzenthaler, S., Court, F., David, L., Girard-Reydet, E., Leibler, L., Pascault, J.P., (2002) Macromolecules, 35, p. 6245
  • (2003) Macromolecules, 36, p. 118
  • Kosonen, H., Ruokolainen, J., Nyholm, P., Ikikala, O., (2001) Macromolecules, 34, p. 3046
  • Dean, J.M., Lipic, P.M., Grubbs, R.B., Cook, R.F., Bates, F.S., (2001) J. Polym. Sci. B, 39, p. 2996
  • Rebizant, V., Abetz, V., Tournilhac, F., Court, F., Leibler, L., (2003) Macromolecules, 36, p. 9889
  • Rebizant, V., Venet, A.S., Tournilhac, F., Girard-Reydet, E., Navarro, C., Pascault, J.P., Leibler, L., (2004) Macromolecules, 37, p. 8017
  • Grubbs, R.B., Dean, J.M., Broz, M.E., Bates, F.S., (2000) Macromolecules, 33, p. 9522
  • Larrañaga, M., Gabilondo, N., Kortaberria, G., Corcuera, M.A., Riccardi, C.C., Mondragon, I., (2005) Polymer, 46, p. 7082
  • Wu, J., Thio, Y.S., Bates, F.S., (2005) J. Polym. Sci. B, 43, p. 1950
  • Guo, Q., Wang, K., Chen, L., Zheng, S., Halley, P.J., (2006) J. Polym. Sci. B, 44, p. 975
  • Serrano, E., Tercjak, A., Kortaberria, G., Pomposo, J.A., Mecerreyes, D., Zafeiropoulos, N.E., Stamm, M., Mondragon, I., (2006) Macromolecules, 39, p. 2254
  • Ruzette, A.V., Leibler, L., (2005) Nature Mater, 4, p. 19
  • Serrano, E., Larrañaga, M., Remiro, P.M., Mondragon, I., Carrasco, P.M., Pomposo, J.A., Mecerreyes, D., (2004) Macromol. Chem. Phys, 205, p. 987
  • Serrano, E., Martin, M.D., Tercjak, A., Pomposo, J.A., Mecerreyes, D., Mondragon, I., (2005) Macromol. Rapid Commun, 26, p. 982A4 - Centre for Emerging Device Technologies at McMaster University; Faculty of Engineering of McMaster University; Fuji iMvac Inc.; Canberra Canada; Newport Canada; et. al.

Citas:

---------- APA ----------
Ramos, J.A., Serrano, E., Tercjak, A., Salgueiro, W., Goyanes, S. & Mondragon, I. (2007) . PALS study of epoxy matrices: Self-assembly of block copolymers and its capability for nanostructuring thermosetting systems. 14th International Conference on Positron Annihilation, ICPA 14, 4(10), 3690-3699.
http://dx.doi.org/10.1002/pssc.200675749
---------- CHICAGO ----------
Ramos, J.A., Serrano, E., Tercjak, A., Salgueiro, W., Goyanes, S., Mondragon, I. "PALS study of epoxy matrices: Self-assembly of block copolymers and its capability for nanostructuring thermosetting systems" . 14th International Conference on Positron Annihilation, ICPA 14 4, no. 10 (2007) : 3690-3699.
http://dx.doi.org/10.1002/pssc.200675749
---------- MLA ----------
Ramos, J.A., Serrano, E., Tercjak, A., Salgueiro, W., Goyanes, S., Mondragon, I. "PALS study of epoxy matrices: Self-assembly of block copolymers and its capability for nanostructuring thermosetting systems" . 14th International Conference on Positron Annihilation, ICPA 14, vol. 4, no. 10, 2007, pp. 3690-3699.
http://dx.doi.org/10.1002/pssc.200675749
---------- VANCOUVER ----------
Ramos, J.A., Serrano, E., Tercjak, A., Salgueiro, W., Goyanes, S., Mondragon, I. PALS study of epoxy matrices: Self-assembly of block copolymers and its capability for nanostructuring thermosetting systems. Phys. Status Solidi C Curr. Top. Solid State Phys. 2007;4(10):3690-3699.
http://dx.doi.org/10.1002/pssc.200675749