Abstract:
Genetic and genomic approaches have been used successfully to assign genes to distinct regulatory networks, but the uncertainty concerning the connections between genes, the ambiguity inherent to the biological processes, and the impossibility of experimentally determining the underlying biological properties only allow a rough prediction of the dynamics of genes. Here we describe the GENIE methodology that formulates alternative models of genetic regulatory networks based on the available literature and transcription factor binding site evidence. It also provides a framework for the analysis of these models optimized by genetic algorithms, inferring their optimal parameters, simulating their behavior, evaluating them by integrating robustness, realness and flexibility criteria, and contrasting the predictions to experimentally results obtained by Gene Fluorescence Protein analysis. The application of this method to the regulatory network of the bacterium Salmonella enterica uncovered new mechanisms that enable the inter-connection of the PhoP/PhoQ and the PmrA/PmrB two component systems. The predictions were experimentally verified to establish that both transcriptional and post-transcriptional mechanisms are employed to connect these two systems. © 2008 Springer-Verlag Berlin Heidelberg.
Registro:
Documento: |
Artículo
|
Título: | Learning robust dynamic networks in prokaryotes by gene expression networks iterative explorer (GENIE) |
Autor: | Harari, O.; Rubio-Escudero, C.; Traverso, P.; Santos, M.; Zwir, I.; Krasnogor N.K.; Nicosia G.N.; Pavone M.P.; Pelta D.P. |
Filiación: | Dept. Computer Science and Artificial Intelligence, University of Granada, Granada E-18071, Spain Dept. Computer Science, University of Buenos Aires, Buenos Aires C1428EGA, Argentina Howard Hughes Medical Institute, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1093, United States
|
Año: | 2008
|
Volumen: | 129
|
Página de inicio: | 299
|
Página de fin: | 311
|
DOI: |
http://dx.doi.org/10.1007/978-3-540-78987-1_27 |
Título revista: | Studies in Computational Intelligence
|
Título revista abreviado: | Stud. Comput. Intell.
|
ISSN: | 1860949X
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1860949X_v129_n_p299_Harari |
Referencias:
- Brenner, S., Genomics. The end of the beginning (2000) Science, 287 (5461), pp. 2173-2174. , P
- Kærn, M., Regulatory dynamics in engineered gene networks (2003) 4th International Systems Biology Conference, , Washington University, St. Louis
- Li, C., Wong, W.H., Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection (2001) Proc Natl Acad Sci U S A, 98 (1), pp. 31-36. , P
- McAdams, H.H., Arkin, A., It's a noisy business! Genetic regulation at the nanomolar scale (1999) Trends Genet, 15 (2), pp. 65-69. , P
- Meir, E., Ingeneue: A versatile tool for reconstituting genetic networks, with examples from the segment polarity network (2002) J Exp Zool, 294 (3), pp. 216-251. , P
- Zwir, I., Traverso, P., Groisman, E.A., Semantic-oriented analysis of regulation: The PhoP regulon as a model network (2003) Proceedings of the 3rd International Conference on Systems Biology (ICSB), , St. Louis, USA
- Hoch, J.A., Two-component and phosphorelay signal transduction (2000) Curr Opin Microbiol, 3 (2), pp. 165-170. , P
- Milo, R., Network motifs: Simple building blocks of complex networks (2002) Science, 298 (5594), pp. 824-827. , P
- Rubio-Escudero, C., Modeling Genetic Networks: Comparison of Static and Dynamic Models (2007) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics, , Valencia, Spain: Springer
- Batchelor, E., Goulian, M., Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system (2003) Proc Natl Acad Sci U S A, 100 (2), pp. 691-696. , P
- Zwir, I., Harari, O., Groisman, E.A., Gene promoter scan methodology for identifying and classifying coregulated promoters (2007) Methods Enzymol, 422, pp. 361-385. , P
- Salgado, H., et al., RegulonDB (version 4.0): Transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res, 2004. 32(Database issue): P. D303-6; Alon, U., An introduction to System Biology. Mathematical and Computational Biology Series, ed. C. Hall/CRC. 2007, London: CRC Press, Taylor & Francis Group; Mitchell, T.M., (1997) Machine learning, , New York: McGraw-Hill. xvii, 414
- Meir, E., Robustness, flexibility, and the role of lateral inhibition in the neurogenic network (2002) Curr Biol, 12 (10), pp. 778-786. , P
Citas:
---------- APA ----------
Harari, O., Rubio-Escudero, C., Traverso, P., Santos, M., Zwir, I., Krasnogor N.K., Nicosia G.N.,..., Pelta D.P.
(2008)
. Learning robust dynamic networks in prokaryotes by gene expression networks iterative explorer (GENIE). Studies in Computational Intelligence, 129, 299-311.
http://dx.doi.org/10.1007/978-3-540-78987-1_27---------- CHICAGO ----------
Harari, O., Rubio-Escudero, C., Traverso, P., Santos, M., Zwir, I., Krasnogor N.K., et al.
"Learning robust dynamic networks in prokaryotes by gene expression networks iterative explorer (GENIE)"
. Studies in Computational Intelligence 129
(2008) : 299-311.
http://dx.doi.org/10.1007/978-3-540-78987-1_27---------- MLA ----------
Harari, O., Rubio-Escudero, C., Traverso, P., Santos, M., Zwir, I., Krasnogor N.K., et al.
"Learning robust dynamic networks in prokaryotes by gene expression networks iterative explorer (GENIE)"
. Studies in Computational Intelligence, vol. 129, 2008, pp. 299-311.
http://dx.doi.org/10.1007/978-3-540-78987-1_27---------- VANCOUVER ----------
Harari, O., Rubio-Escudero, C., Traverso, P., Santos, M., Zwir, I., Krasnogor N.K., et al. Learning robust dynamic networks in prokaryotes by gene expression networks iterative explorer (GENIE). Stud. Comput. Intell. 2008;129:299-311.
http://dx.doi.org/10.1007/978-3-540-78987-1_27