Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The nature of the neural mechanisms in the birdsong motor pathway that lead to the generation of respiratory patterns are a matter of extensive debate. In a top-down control paradigm, vocal gestures emerge from a unique timescale ruled by the telencephalic nucleus HVC, which engages other brain regions downstream. Another possibility is that the generation of motor instructions is distributed throughout the neural network, owing both upstream and downstream. In this circular architecture, the song results from the integration of more than one timescale. In order to disambiguate these views, we used local focal cooling of HVC in canaries to manipulate the timescale present there. Within the frame of the circular model, we Fitted the experimental pressure patterns of different types of syllables, which form a full song. We show that at least two separate timescales must be taken into account to reproduce them, one which is manipulated by cooling while the other remains unchanged. The modifications |stretching and breaking| of the syllables were quantitatively reproduced in this frame. © 2018, Instituto de Fisica de Liquidos y Sistemas Biologicos. All rights reserved.

Registro:

Documento: Artículo
Título:Modeling temperature manipulations in a circular model of birdsong production
Autor:Dima, G.C.; Goldin, M.A.; Mindlin, G.B.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA (CONICET), Pabellón 1, Cuidad Universitaria, Buenos Aires, 1428, Argentina
Unité de Neurosciences Information et Complexité, Centre National de la Recherche Scientifique UPR-3293, 1 Avenue de la Terrasse, Gif-sur-Yvette, 91190, France
Año:2018
Volumen:10
DOI: http://dx.doi.org/10.4279/PIP.100002
Título revista:Papers in Physics
Título revista abreviado:Pap. Phys.
ISSN:18524249
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18524249_v10_n_p_Dima

Referencias:

  • Zeigler, H.P., Marler, P., (2008) Neuroscience of Birdsong, , Cambridge University Press, Cambridge
  • Wild, J.M., Neural pathways for the control of birdsong production, Dev (1997) Neurobiol, 33, p. 653
  • Nottebohm, F., The neural basis of birdsong (2005) Plos Biol, p. 3
  • Ashmore, R.C., Wild, J.M., Schmidt, M.F., Brainstem and forebrain contributions to the generation of learned motor behaviors for song (2005) J. Neurosci, 25, p. 37
  • Hahnloser, R.H., Kotowicz, A., Auditory representations and memory in birdsong learning (2010) Curr. Opin. Neurobiol, 20, p. 332
  • Goller, F., Suthers, R.A., Role of syringeal muscles in controlling the phonology of bird song (1996) J. Neurophysiol, 76, p. 287
  • Goller, F., Suthers, R.A., Role of syringeal muscles in gating airow and sound production in singing brown thrashers (1996) J. Neurophysiol, 75, p. 867
  • Mindlin, G.B., Gardner, T.J., Goller, F., Suthers, R., Experimental support for a model of birdsong production (2003) Phys. Rev. E, p. 68
  • Schmidt, M.F., Goller, F., Breathtaking songs: Coordinating the neural circuits for breathing and singing (2016) Physiology, 31, p. 442
  • G Angle, H., Coskun, A., Complete syllable dictionary for Serinus canarius (2014) Ecol. Inf., 20, p. 67
  • Alliende, J.A., Mndez, J.M., Goller, F., Mindlin, G.B., Hormonal acceleration of song development illuminates motor control mechanism in canaries (2010) Dev. Neurobiol, 70, p. 943
  • Hahnloser, R.H., Kozhevnikov, A.A., Fee, M.S., An ultra-sparse code underlies the generation of neural sequences in a songbird (2002) Nature, 419, p. 6902
  • Fee, M.S., Kozhevnikov, A.A., Hahnloser, R.H., Neural mechanisms of vocal sequence generation in the songbird (2004) Ann. NY. Acad. Sci, 1016, p. 153
  • Long, M.A., Fee, M.S., Using temperature to analyse temporal dynamics in the songbird motor pathway (2008) Nature, 456, p. 189
  • Alonso, R.G., Trevisan, M.A., Amador, A., Goller, F., Mindlin, G.B., A circular model for song motor control in Serinus canaria. (2015) Front. Comput. Neurosci, 9, p. 1
  • Amador, A., Boari, S., Mindlin, G.B., From perception to action in songbird production: Dynamics of a whole loop (2017) Curr. Opin. Syst. Biol, 3, p. 30
  • Bertram, R., Daou, A., Hyson, R.L., Johnson, F., Wu, W., Two neural streams, one voice (2014) Pathways for Theme and Variation in the Songbird Brain, Neuroscience, 277, p. 806
  • Schmidt, M.F., Wild, J.M., The respiratoryvocal system of songbirds: Anatomy, physiology, and neural control (2014) Prog. Brain Res, 212, p. 297
  • Goldin, M.A., Alonso, L.M., Alliende, J.A., Goller, F., Mindlin, G.B., Temperature induced syllable breaking unveils nonlinearly interacting timescales in birdsong motor pathway (2013) Plos One, p. 8
  • Goldin, M.A., Mindlin, G.B., Evidence and control of bifurcations in a respiratory system (2013) Chaos, p. 23
  • Andalman, A.S., Foerster, J.N., Fee, M.S., Control of vocal and respiratory patterns in birdsong: Dissection of forebrain and brainstem mechanisms using temperature (2011) Plos One, p. 6
  • Hamaguchi, K., Tanaka, M., Mooney, R., A distributed recurrent network contributes to temporally precise vocalizations (2016) Neuron, 91, p. 1
  • Zhang, Y.S., Wittenbach, J.D., Jin, D.Z., Kozhevnikov, A.A., Temperature manipulation in songbird brain implicates the premotor nucleus HVC in birdsong syntax (2017) J. Neurosci, 37, p. 2600
  • Goldin, M.A., Mindlin, G.B., Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus (2017) Plos Comput. Biol, p. 13
  • Galvis, D., Hyson, W.W., Johnson, F., Bertram, R., A distributed neural network model for the distinct roles of medial and lateral HVC in zebra finch song production (2017) J. Neurophysiol, 118, p. 677
  • Kornfeld, J., Benezra, S.E., Narayanan, R.T., Svara, F., Egger, R., Oberlaender, M., Denk, W., Long, M.A., EM connectomics reveals axonal target variation in a sequence-generating network (2017) Elife, p. 6
  • Schmidt, M.F., Ashmore, R.C., Vu, E.T., Bilateral control and interhemispheric coordination in the avian song motor system (2004) Ann. NY. Acad. Sci, 1016, p. 171
  • Ashmore, R.C., Renk, J.A., Schmidt, M.F., Bottom-up activation of the vocal motor forebrain by the respiratory brainstem (2008) J. Neurosci, 28, p. 2613
  • Suthers, R.A., Zollinger, S.A., Producing song: The vocal apparatus (2004) Ann. NY. Acad. Sci, 1016, p. 109
  • Hoppensteadt, F.C., Izhikevich, E.M., (1997) Weakly Connected Neural Networks, , Springer, New York
  • McCasland, J.S., Konishi, M., Interaction betweenauditory and motor activities in an avian song control nucleus (1981) P. Natl. Acad. Sci. USA, 78, p. 7815
  • Amador, A., Perl, Y.S., Mindlin, G.B., Margoliash, D., Elemental gesture dynamics are encoded by song premotor cortical neurons (2013) Nature, 495, p. 59
  • Mooney, R., Prather, J.F., The HVC microcircuit: The synaptic basis for interactions between song motor and vocal plasticity pathways (2005) J. Neurosci, 25, p. 1952

Citas:

---------- APA ----------
Dima, G.C., Goldin, M.A. & Mindlin, G.B. (2018) . Modeling temperature manipulations in a circular model of birdsong production. Papers in Physics, 10.
http://dx.doi.org/10.4279/PIP.100002
---------- CHICAGO ----------
Dima, G.C., Goldin, M.A., Mindlin, G.B. "Modeling temperature manipulations in a circular model of birdsong production" . Papers in Physics 10 (2018).
http://dx.doi.org/10.4279/PIP.100002
---------- MLA ----------
Dima, G.C., Goldin, M.A., Mindlin, G.B. "Modeling temperature manipulations in a circular model of birdsong production" . Papers in Physics, vol. 10, 2018.
http://dx.doi.org/10.4279/PIP.100002
---------- VANCOUVER ----------
Dima, G.C., Goldin, M.A., Mindlin, G.B. Modeling temperature manipulations in a circular model of birdsong production. Pap. Phys. 2018;10.
http://dx.doi.org/10.4279/PIP.100002