Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

One-dimensional nanostructures have shown high photocatalytic efficiency due to their high surface area to volume ratio and charge transfer efficiency. In this work, we have studied the influence of zinc acetate content (zinc acetate to polyvinyl alcohol (PVA) mass ratio) on the photoelectrochemical performance of zinc oxide (ZnO) nanostructures. The nanostructures of ZnO were fabricated on fluorine-doped tin oxide glass substrate by electrospinning of aqueous solution containing different amounts of zinc acetate. The precursor nanofibers of zinc acetate/PVA were converted into polycrystalline ZnO nanostructures with hexagonal wurtzite crystal structure by calcination at 600°C for 3 h. It was found that by increasing the amount of zinc acetate, the diameter of the as-spun precursor fibers increased and their distribution became broader. The mean diameter of the ZnO nanoparticles forming the nanostructures ranged from 45 to 80 nm by increasing the amount of zinc acetate. The incident photon to current efficiency (IPCE) spectra of the ZnO nanostructures were measured in a three-electrode cell, using a platinum wire as a counterelectrode and silver/silver chloride as a reference electrode. The ZnO nanostructures fabricated with zinc acetate to PVA ratios of 2:3 and 1:1 exhibited approximately 31% and 28% IPCE, respectively, at about 350 nm compared with the ZnO nanostructures fabricated with zinc acetate to PVA ratios of 1:2 (7%) and 3:2 (4%) due to the increased number of nanostructures, resulting in the enhancement of light absorption and electron transfer rate. © 2016, © The Author(s) 2016.

Registro:

Documento: Artículo
Título:Influence of zinc acetate content on the photoelectrochemical performance of zinc oxide nanostructures fabricated by electrospinning technique
Autor:Ramos, P.G.; Morales, N.J.; Candal, R.J.; Hojamberdiev, M.; Rodriguez, J.
Filiación:Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Peru
Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-UBA, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Instituto de Investigación e Ingeniería Ambiental, Escuela de Ciencia y Tecnología, CONICET, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
Department of Natural and Mathematic Sciences, Turin Polytechnic University in Tashkent, Kichik Halqa Yo’li, Tashkent, Uzbekistan
Palabras clave:electrospinning; fiber precursor; nanostructures; photoelectrochemical performance; zinc acetate; Zinc oxide; Charge transfer; Chlorine compounds; Crystal structure; Doping (additives); Efficiency; Electrochemistry; Electrodes; Electrospinning; Fabrication; II-VI semiconductors; Light absorption; Nanocomposites; Nanostructures; Silver halides; Solutions; Substrates; Tin oxides; Zinc oxide; Zinc sulfide; ZnO nanoparticles; Charge transfer efficiency; Electrospinning techniques; Incident photon-to-current efficiencies; One-dimensional nanostructure; Photoelectrochemical performance; Poly (vinyl alcohol) (PVA); Zinc acetate; Zinc oxide (ZnO) nanostructures; Polyvinyl acetates
Año:2016
Volumen:6
DOI: http://dx.doi.org/10.1177/1847980416663679
Título revista:Nanomaterials and Nanotechnology
Título revista abreviado:Nanomaterials Nanotechnology
ISSN:18479804
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18479804_v6_n_p_Ramos

Referencias:

  • Chen, X., Zhai, Y., Li, J., Increased photocatalytic activity of tube-brush-like ZnO nanostructures fabricated by using PVP nanofibers as templates (2014) Appl Surf Sci, 319, pp. 216-220
  • Yu, H., Fan, H., Wang, X., Synthesis and optical properties of Co-doped ZnO nanofibers prepared by electrospinning (2014) Optik–Int J Light Elect Optics, 125, pp. 2361-2364
  • Kanjwal, M.A., Sheikh, F.A., Barakat, N.A.M., Co3O4–ZnO hierarchical nanostructures by electrospinning and hydrothermal methods (2011) Appl Surf Sci, 257, pp. 7975-7981
  • Li, F., Wang, G., Jiao, Y., Efficiency enhancement of ZnO-based dye-sensitized solar cell by hollow TiO2 nanofibers (2014) J Alloys Compd, 611, pp. 19-23
  • Wei, S., Wang, S., Zhang, Y., Different morphologies of ZnO and their ethanol sensing property (2014) Sensor Actuators B Chem, 192, pp. 480-487
  • Park, J.Y., Kim, J.-J., Kim, S.S., Electrical transport properties of ZnO nanofibers (2013) Microelect Eng, 101, pp. 8-11
  • Wang, Z.L., Nanostructures of zinc oxide (2004) Mater Today, 7, pp. 26-33
  • Luo, L., Lv, G., Li, B., Formation of aligned ZnO nanotube arrays by chemical etching and coupling with CdSe for photovoltaic application (2010) Thin Solid Films, 518, pp. 5146-5152
  • Elias, J., Tena-Zaera, R., Lévy-Clément, C., Electrochemical deposition of ZnO nanowire arrays with tailored dimensions (2008) J Electroanal Chem, 621, pp. 171-177
  • Sanchez, L., Guz, L., García, P., Synthesis and characterization of ZnO nanorods films on PET for photocatalytic disinfection of water (2015) J Adv Oxid Technol, 18, pp. 246-252
  • Park, J.-A., Moon, J., Lee, S.-J., Fabrication and characterization of ZnO nanofibers by electrospinning (2009) Curr Appl Phys, 9, pp. S210-S212
  • Lee, H.U., Park, S.Y., Lee, S.C., Highly photocatalytic performance of flexible 3 dimensional (3D) ZnO nanocomposite (2014) Appl Catal B, 144, pp. 83-89
  • Panthi, G., Park, M., Kim, H.-Y., Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: a review (2015) J Ind Eng Chem, 24, pp. 1-13
  • Ramakrishna, S., Fujihara, K., Teo, W.-E., (2005) An introduction to electrospinning and nanofibers, , Singapore, World Scientific Publishing
  • Merritt, S.R., Exner, A.A., Lee, Z., Electrospinning and imaging (2012) Adv Eng Mater, 14, pp. B266-B278
  • Jin, L., Wang, T., Zhu, M.-L., Electrospun fibers and tissue engineering (2012) J Biomed Nanotechnol, 8, pp. 1-9
  • Samadi, M., Pourjavadi, A., Moshfegh, A.Z., Role of CdO addition on the growth and photocatalytic activity of electrospun ZnO nanofibers: UV vs. visible light (2014) Appl Surf Sci, 298, pp. 147-154
  • Ren, P., Fan, H., Wang, X., Electrospun nanofibers of ZnO/BaTiO3 heterostructures with enhanced photocatalytic activity (2012) Catal Commun, 25, pp. 32-35
  • Murugan, R., Babu, V.J., Khin, M.M., Synthesis and photocatalytic applications of flower shaped electrospun ZnO–TiO2 mesostructures (2013) Mater Lett, 97, pp. 47-51
  • Singh, P., Mondal, K., Sharma, A., Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater (2013) J Colloid Interface Sci, 394, pp. 208-215
  • Zhenyu, L., Wang, C., (2013) One-dimensional Nanostructures: electrospinning technique and Unique Nanofibers, , Berlin, Springer
  • Yang, R.-R., He, J.-H., Xu, L., Effect of solution concentration on diameter and morphology of PVA nanofibers in bubble electrospinning process (2010) Mater Sci Tech Ser, 26, pp. 1313-1316
  • Sangkhaprom, N., Supaphol, P., Pavarajarn, V., Fibrous zinc oxide prepared by combined electrospinning and solvothermal techniques (2010) Ceram Int, 36, pp. 357-363
  • Muangban, J., Jaroenapibal, P., Effects of precursor concentration on crystalline morphologies and particle sizes of electrospun WO3 nanofibers (2014) Ceram Int, 40, pp. 6759-6764
  • Archana, J., Navaneethan, M., Hayakawa, Y., Morphological transformation of ZnO nanoparticle to nanorods via solid–solid interaction at high temperature annealing and functional properties (2016) Scr Mater, 113, pp. 163-166
  • Li, Y., Gong, J., Deng, Y., Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights (2010) Sensor Actuat A Phys, 158, pp. 176-182
  • Dong, X., Yang, P., Shi, R., Fabrication of ZnO nanorod arrays via electrospinning assisted hydrothermal method (2014) Mater Lett, 135, pp. 96-98
  • Wijeratne, K., Bandara, J., Aspect-ratio dependent electron transport and recombination in dye-sensitized solar cells fabricated with one-dimensional ZnO nanostructures (2014) Electrochim Acta, 148, pp. 302-309
  • Fang, J., Fan, H., Tian, H., Morphology control of ZnO nanostructures for high efficient dye-sensitized solar cells (2015) Mater Char, 108, pp. 51-57
  • Ganesh, T., Bhande, S.S., Mane, R.S., Crystallographic phase-mediated dye-sensitized solar cell performance of ZnO nanostructures (2013) Scr Mater, 69, pp. 291-294
  • Thavasi, V., Renugopalakrishnan, V., Jose, R., Controlled electron injection and transport at materials interfaces in dye sensitized solar cells (2009) Mater Sci Eng R-Rep, 63, pp. 81-99
  • Dong, X., Yang, P., Liu, Y., Morphology evolution of one-dimensional ZnO nanostructures towards enhanced photocatalysis performance (2016) Ceram Int, 42, pp. 518-526

Citas:

---------- APA ----------
Ramos, P.G., Morales, N.J., Candal, R.J., Hojamberdiev, M. & Rodriguez, J. (2016) . Influence of zinc acetate content on the photoelectrochemical performance of zinc oxide nanostructures fabricated by electrospinning technique. Nanomaterials and Nanotechnology, 6.
http://dx.doi.org/10.1177/1847980416663679
---------- CHICAGO ----------
Ramos, P.G., Morales, N.J., Candal, R.J., Hojamberdiev, M., Rodriguez, J. "Influence of zinc acetate content on the photoelectrochemical performance of zinc oxide nanostructures fabricated by electrospinning technique" . Nanomaterials and Nanotechnology 6 (2016).
http://dx.doi.org/10.1177/1847980416663679
---------- MLA ----------
Ramos, P.G., Morales, N.J., Candal, R.J., Hojamberdiev, M., Rodriguez, J. "Influence of zinc acetate content on the photoelectrochemical performance of zinc oxide nanostructures fabricated by electrospinning technique" . Nanomaterials and Nanotechnology, vol. 6, 2016.
http://dx.doi.org/10.1177/1847980416663679
---------- VANCOUVER ----------
Ramos, P.G., Morales, N.J., Candal, R.J., Hojamberdiev, M., Rodriguez, J. Influence of zinc acetate content on the photoelectrochemical performance of zinc oxide nanostructures fabricated by electrospinning technique. Nanomaterials Nanotechnology. 2016;6.
http://dx.doi.org/10.1177/1847980416663679