Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The yeast Saccharomyces cerevisiae is widely used as a biological eukaryotic model and also serves as a production organism in biotechnology. One of the methods used to avoid degradation of the yeast cell content is lyophilization. The use of lyophilized yeast cells has several advantages over fresh ones: samples can be easily transported and/or stored and variations of their metabolomic profiles do not occur during transport or storage. Fourier transform infrared (FTIR) spectroscopy is one of the most emerging approaches in modern biology that permits operation on very small quantities of whole cells without the need for extractions or purifications. This technique is very sensitive and not only allows the discrimination between different cell genotypes but also between different growth conditions. FTIR spectra provide interesting data on the metabolic status of the whole cell. Modern multivariate data processing was applied to analyse live fresh or lyophilized S. cerevisiae cells from different growth media. This study clearly demonstrates that yeast cells coming from an identical biological medium can be used indiscriminately for FTIR analysis whether they are analysed directly as live fresh cells or after lyophilization which is a freeze-drying process. Moreover, FTIR data obtained using lyophilized cells showed less variability. © The Royal Society of Chemistry 2014.

Registro:

Documento: Artículo
Título:FTIR spectroscopic metabolome analysis of lyophilized and fresh Saccharomyces cerevisiae yeast cells
Autor:Correa-García, S.; Bermúdez-Moretti, M.; Travo, A.; Déléris, G.; Forfar, I.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Buenos Aires, Argentina
CNRS FRE 3396 Pharmacochimie, Université de Bordeaux, 146, rue Léo Saignat, F-33076 Bordeaux, France
Palabras clave:Biological medium; Freeze-drying process; FT-IR spectrum; Growth conditions; Metabolome analysis; Multivariate data; Saccharomyces cerevisiae yeast; Yeast Saccharomyces cerevisiae; Cells; Cytology; Data processing; Digital storage; Fourier transform infrared spectroscopy; Spectroscopic analysis; Yeast
Año:2014
Volumen:6
Número:6
Página de inicio:1855
Página de fin:1861
DOI: http://dx.doi.org/10.1039/c3ay42322k
Título revista:Analytical Methods
Título revista abreviado:Anal. Methods
ISSN:17599660
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17599660_v6_n6_p1855_CorreaGarcia

Referencias:

  • Louis, E., (2011) Methods Mol. Biol., 759, pp. 31-40
  • Teixeira, M.C., Monteiro, P.T., Guerreiro, J.F., Goncalves, J.P., Mira, N.P., Dos Santos, S.C., Cabrito, T.R., Sa-Correia, I., (2014) Nucleic Acids Res., 42, pp. 161-166
  • Kim, H., Shin, J., Kim, E., Hwang, S., Shim, J.E., Lee, I., (2014) Nucleic Acids Res., 42, pp. 731-736
  • Castrillo, J.I., Oliver, S.G., (2011) Methods Mol. Biol., 759, pp. 3-28
  • Otero, J.M., Cimini, D., Patil, K.R., Poulsen, S.G., Olsson, L., Nielsen, J., (2013) PLoS One, 8, p. 54144
  • Grassl, J., Westbrook, J.A., Robinson, A., Boren, M., Dunn, M.J., Clyne, R.K., (2009) Proteomics, 9, pp. 4616-4626
  • Martins, A.M., Sha, W., Evans, C., Martino-Catt, S., Mendes, P., Shulaev, V., (2007) Yeast, 24, pp. 181-188
  • Goodacre, R., Timmins, E.M., Rooney, P.J., Rowland, J.J., Kell, D.B., (1996) FEMS Microbiol. Lett., 140, pp. 233-239
  • Galichet, A., Sockalingum, G.D., Belarbi, A., Manfait, M., (2001) FEMS Microbiol. Lett., 197, pp. 179-186
  • Burattini, E., Cavagna, M., Dell'Anna, R., Malvezzi Campeggi, F., Monti, F., Rossi, F., Torriani, S., (2008) Vib. Spectrosc., 47, pp. 139-147
  • Wenning, M., Seiler, H., Scherer, S., (2002) Appl. Environ. Microbiol., 68, pp. 4717-4721
  • Lamprell, H., Mazerolles, G., Kodjo, A., Chamba, J.F., Noel, Y., Beuvier, E., (2006) Int. J. Food Microbiol., 108, pp. 125-129
  • Naumann, D., Helm, D., Labischinski, H., (1991) Nature, 351, pp. 81-82
  • Adt, I., Kohler, A., Gognies, S., Budin, J., Sandt, C., Belarbi, A., Manfait, M., Sockalingum, G.D., (2010) Can. J. Microbiol., 56, pp. 793-801
  • Rellini, P., Roscini, L., Fatichenti, F., Morini, P., Cardinali, G., (2009) FEMS Yeast Res., 9, pp. 460-467
  • Corte, L., Antonielli, L., Roscini, L., Fatichenti, F., Cardinali, G., (2011) Analyst, 136, pp. 2339-2349
  • Dettmer, K., Aronov, P.A., Hammock, B.D., (2007) Mass Spectrom. Rev., 26, pp. 51-78
  • Kawase, N., Tsugawa, H., Bamba, T., Fukusaki, E., (2014) J. Biosci. Bioeng., 117, pp. 248-255
  • Cooper, T.G., (2002) FEMS Microbiol. Rev., 26, pp. 223-238
  • Magasanik, B., Kaiser, C.A., (2002) Gene, 290, pp. 1-18
  • Talibi, D., Grenson, M., Andre, B., (1995) Nucleic Acids Res., 23, pp. 550-557
  • Wiame, J.M., Grenson, M., Arst Jr., H.N., (1985) Adv. Microb. Physiol., 26, pp. 1-88
  • Sandt, C., Sockalingum, G.D., Aubert, D., Lepan, H., Lepouse, C., Jaussaud, M., Leon, A., Toubas, D., (2003) J. Clin. Microbiol., 41, pp. 954-959
  • Travo, A., Desplat, V., Barron, E., Poychicot-Coustau, E., Guillon, J., Deleris, G., Forfar, I., (2012) Anal. Bioanal. Chem., 404, pp. 1733-1743
  • Bohren, C., Huffman, D., (2010) Absorption and Scattering of Light by Small Particles, , Wiley-Interscience, New York, ISBN 3527406646
  • Wang, L., Mizaikioff, B., (2008) Anal. Bioanal. Chem., 391, pp. 1641-1654
  • Barker, M., Rayens, W., (2003) J. Chemom., 17, pp. 166-173
  • De Sousa Marques, A., Nicacio, J.T., Cidral, T.A., De Melo, M.C., De Lima, K.M., (2013) J. Microbiol. Methods, 93, pp. 90-94
  • Bertrand, D., Coredella, C., SAISIR Package, Free Toolbox for Chemometrics in the Matlab, , http://www.chimiometrie.fr/saisir_webpage.html, Octave or Scilab environments
  • Buchl, N.R., Hutzler, M., Mietke-Hofmann, H., Wenning, M., Scherer, S., (2010) J. Appl. Microbiol., 109, pp. 783-791
  • Szeghalmi, A., Kaminskyj, S., Gough, K.M., (2007) Anal. Bioanal. Chem., 387, pp. 1779-1789
  • Corte, L., Rellini, P., Roscini, L., Fatichenti, F., Cardinali, G., (2010) Anal. Chim. Acta, 659, pp. 258-265
  • Godard, P., Urrestarazu, A., Vissers, S., Kontos, K., Bontempi, G., Van Helden, J., Andre, B., (2007) Mol. Cell. Biol., 27, pp. 3065-3086
  • Kuligowski, J., Quintas, G., Herwig, C., Lendl, B., (2012) Talanta, 99, pp. 566-573
  • Vongsvivut, J., Heraud, P., Gupta, A., Puri, M., McNaughton, D., Barrow, C.J., (2013) Analyst, 138, pp. 6016-6031
  • Oelofse, A., Malherbe, S., Pretorius, I.S., Du Toit, M., (2010) Int. J. Food Microbiol., 143, pp. 136-142
  • Taleb, A., Diamond, J., McGarvey, J.J., Beattie, J.R., Toland, C., Hamilton, P.W., (2006) J. Phys. Chem. B, 110, pp. 19625-19631

Citas:

---------- APA ----------
Correa-García, S., Bermúdez-Moretti, M., Travo, A., Déléris, G. & Forfar, I. (2014) . FTIR spectroscopic metabolome analysis of lyophilized and fresh Saccharomyces cerevisiae yeast cells. Analytical Methods, 6(6), 1855-1861.
http://dx.doi.org/10.1039/c3ay42322k
---------- CHICAGO ----------
Correa-García, S., Bermúdez-Moretti, M., Travo, A., Déléris, G., Forfar, I. "FTIR spectroscopic metabolome analysis of lyophilized and fresh Saccharomyces cerevisiae yeast cells" . Analytical Methods 6, no. 6 (2014) : 1855-1861.
http://dx.doi.org/10.1039/c3ay42322k
---------- MLA ----------
Correa-García, S., Bermúdez-Moretti, M., Travo, A., Déléris, G., Forfar, I. "FTIR spectroscopic metabolome analysis of lyophilized and fresh Saccharomyces cerevisiae yeast cells" . Analytical Methods, vol. 6, no. 6, 2014, pp. 1855-1861.
http://dx.doi.org/10.1039/c3ay42322k
---------- VANCOUVER ----------
Correa-García, S., Bermúdez-Moretti, M., Travo, A., Déléris, G., Forfar, I. FTIR spectroscopic metabolome analysis of lyophilized and fresh Saccharomyces cerevisiae yeast cells. Anal. Methods. 2014;6(6):1855-1861.
http://dx.doi.org/10.1039/c3ay42322k