Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An amino-functionalized mesoporous sorbent with double imprinting of Cd(ii) and surfactant micelles was prepared via the sol-gel co-condensation method. The material was employed for the highly selective preconcentration of cadmium ions in minicolumns (MCs) and their determination at ultratrace levels by graphite furnace atomic adsorption spectroscopy (GFAAS). For comparative purposes ion-imprinted (II) and non-imprinted (NI) solids were characterized by SEM, FTIR and nitrogen gas adsorption-desorption. Batch experiments including pH influence, sorption capacity and adsorption kinetics were carried out in order to optimize the adsorption-elution process. II showed a greater absorption capacity than the NI sorbent being 122 mg g-1 and 67 mg g-1 respectively, consistent with the Langmuir isotherm equation. Sample and elution flow rates, volumes of the sample and eluent and the choice of the most suitable eluent were tested and optimized under MC dynamic conditions for both sorbents. Under optimized conditions, the II filling showed a preconcentration factor (PCF) of 50 whilst that of NI was 10. The higher selectivity of filler II was revealed when comparing the maximum tolerable limit (MTL) of interfering cations and anions commonly found in water samples, the MTL for II being 100 to 200 times higher than that for NI for all the tested concomitants. The main figures of merit found for solid II are: a limit of detection of 0.0011 ng mL-1 (3Sb), a linear range of 0.01-20 ng mL-1, and RSD% of 2 (n = 6; 0.05 ng mL-1). Additionally, the operation under dynamic conditions together with the employment of low volumes of the sample and eluent allowed a large lifetime of sorbent II of more than 700 cycles with no loss of sensitivity or need for refilling. The method was successfully applied to the determination of traces of Cd(ii) in osmosis and tap water with recoveries of 98.8-101.3%. A full discussion will be provided, including a comparison with other methods already reported in the literature. © 2018 The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:An ion imprinted amino-functionalized mesoporous sorbent for the selective minicolumn preconcentration of cadmium ions and determination by GFAAS
Autor:Minaberry, Y.S.; Tudino, M.
Filiación:Laboratorio de Trazas, INQUIMAE, DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Buenos Aires, C1428EHA, Argentina
Palabras clave:Fourier transform infrared spectroscopy; Gas adsorption; Ions; Isotherms; Linearization; Micelles; Sol-gels; Sorbents; Absorption capacity; Adsorption desorption; Adsorption kinetics; Atomic adsorption spectroscopy; Minicolumn preconcentration; Optimized conditions; Sorption capacities; Surfactant micelles; Cadmium compounds
Año:2018
Volumen:10
Número:44
Página de inicio:5305
Página de fin:5312
DOI: http://dx.doi.org/10.1039/c8ay01496e
Título revista:Analytical Methods
Título revista abreviado:Anal. Methods
ISSN:17599660
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17599660_v10_n44_p5305_Minaberry

Referencias:

  • (1993) IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, 58, pp. 119-374. , International Agency for Research on Cancer (IARC)
  • (2006) Guidelines for Drinking-water Quality, 1. , World Health Organization Recommendations, Geneva, 3rd edn
  • (2003) National Primary Drinking Water Standards, , Unites States Environmental Protection Agency
  • Płotka-Wasylka, J., Szczepańska, N., De La Guardia, M., Namieśnik, J., (2016) TrAC, Trends Anal. Chem., 77, p. 23
  • Karadjova, I., Dakova, I., Yordanova, T., Vasileva, P., (2016) J. Anal. At. Spectrom., 31, p. 1949
  • Buszewski, B., Szultka, M., (2012) Crit. Rev. Anal. Chem., 42, p. 198
  • Türker, A.R., (2012) Sep. Purif. Rev., 41, p. 169
  • Hu, B., He, M., Chen, B., (2015) Anal. Bioanal. Chem., 407, p. 2685
  • Sierra, I., Pérez-Quintanilla, D., (2013) Chem. Soc. Rev., 42, p. 3792
  • Walcarius, A., Mercier, L., (2010) J. Mater. Chem., 20, p. 4478
  • Walcarius, A., Collinson, M.M., (2009) Annu. Rev. Anal. Chem., 2, p. 121
  • Fu, J., Chen, L., Li, J., Zhang, Z., (2015) J. Mater. Chem. A, 3, p. 13598
  • Rao, T.P., Kala, R., Daniel, S., (2006) Anal. Chim. Acta, 578, p. 105
  • Shakerian, F., Kim, K.H., Kwon, E., Szulejko, J.E., Kumar, P., Dadfarnia, S., Shabani, A.M.H., (2016) TrAC, Trends Anal. Chem., 83, p. 55
  • Zhao, B., He, M., Chen, B., Hu, B., (2015) Spectrochim. Acta, Part B, 107, p. 115
  • He, H., Xiao, D., He, J., Li, H., He, H., Dai, H., Peng, J., (2014) Analyst, 139, p. 2459
  • Fan, H.T., (2012) Appl. Surf. Sci., 258, p. 3815
  • Zhang, N., Hu, B., (2012) Anal. Chim. Acta, 723, p. 54
  • Liu, Y., Liu, Z., Gao, J., Dai, J., Han, J., Wang, Y., Yan, Y., (2011) J. Hazard. Mater., 186, p. 197
  • Chang, X., Jiang, N., Zheng, H., He, Q., Hu, Z., Zhai, Y., Cui, Y., (2007) Talanta, 71, p. 38
  • Etienne, M., Lebeau, B., Walcarius, A., (2002) New J. Chem., 26, p. 384
  • Walcarius, A., Delacôte, C., (2003) Chem. Mater., 15, p. 4181
  • Dai, S., (2000) J. Am. Chem. Soc., 122, p. 992
  • Makote, R.D., Dai, S., (2001) Anal. Chim. Acta, 435, p. 169
  • Kang, C., Li, W., Tan, L., Li, H., Wei, C., Tang, Y., (2013) J. Mater. Chem. A, 1, pp. 7147-7153
  • Xie, F., Liu, G., Wu, F., Guo, G., Li, G., (2012) Chem. Eng. J., 183, p. 372
  • Wang, Z., Wu, G., Wang, M., He, C., (2009) J. Mater. Sci., 44, p. 2694
  • Lu, Y.K., Yan, X.P., (2004) Anal. Chem., 76, p. 453
  • Minaberry, Y.S., Stripeikis, J., Tudino, M., (2018) Anal. Methods, 10, p. 3144
  • Kim, M.L., Tudino, M.B., (2010) Talanta, 82, p. 923
  • Chiron, N., Guilet, R., Deydier, E., (2003) Water Res., 37, p. 3079
  • Li, Z.C., (2011) Chem. Eng., 171, p. 703
  • Qi, X., Gao, S., Ding, G., Tanga, A., (2017) Talanta, 162, p. 345
  • Pearson, R.G., (1963) J. Am. Chem. Soc., 85, pp. 3533-3539
  • Wang, L., Hang, X., Chen, Y., Wang, Y., Feng, X., (2016) Anal. Lett., 49, p. 818
  • Wen, S., Zhu, X., Huang, Q., Wang, H., Xu, W., Zhou, N., (2014) Microchim. Acta, 181, p. 1041
  • Mohajer, S., Chamsaz, M., Entezari, M.H., (2014) Anal. Methods, 6, p. 9490

Citas:

---------- APA ----------
Minaberry, Y.S. & Tudino, M. (2018) . An ion imprinted amino-functionalized mesoporous sorbent for the selective minicolumn preconcentration of cadmium ions and determination by GFAAS. Analytical Methods, 10(44), 5305-5312.
http://dx.doi.org/10.1039/c8ay01496e
---------- CHICAGO ----------
Minaberry, Y.S., Tudino, M. "An ion imprinted amino-functionalized mesoporous sorbent for the selective minicolumn preconcentration of cadmium ions and determination by GFAAS" . Analytical Methods 10, no. 44 (2018) : 5305-5312.
http://dx.doi.org/10.1039/c8ay01496e
---------- MLA ----------
Minaberry, Y.S., Tudino, M. "An ion imprinted amino-functionalized mesoporous sorbent for the selective minicolumn preconcentration of cadmium ions and determination by GFAAS" . Analytical Methods, vol. 10, no. 44, 2018, pp. 5305-5312.
http://dx.doi.org/10.1039/c8ay01496e
---------- VANCOUVER ----------
Minaberry, Y.S., Tudino, M. An ion imprinted amino-functionalized mesoporous sorbent for the selective minicolumn preconcentration of cadmium ions and determination by GFAAS. Anal. Methods. 2018;10(44):5305-5312.
http://dx.doi.org/10.1039/c8ay01496e