Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work we present a solid phase extraction (SPE) flow-through system coupled to graphite furnace atomic absorption spectrometry (GFAAS) for the determination of Cd(ii) at ultratrace levels. The flow system holds a minicolumn which was filled, one at a time, with three different lab-made materials: (a) mesoporous silica functionalized with 3-aminopropyl groups from 3-aminopropyl triethoxysilane (HMS); (b) HMS with a resin, Amberlite IR120; and (c) HMS-Amberlite IR120 and polyvinyl alcohol (PVA). All the solids were characterized by FTIR and SEM. Batch experiments were performed in order to study the optimum adsorption pH, the adsorption kinetics and the maximum adsorption capacity. The materials were compared in terms of their aptitude for the pre-concentration of the analyte under dynamic conditions. Microvolumes of HCl were employed for the release of cadmium and its introduction into the electrothermal atomizer. The operational variables of the flow system were also tested and optimized. A comparison of the figures of merit revealed that HMS-A-PVA was the best option from an analytical point of view: limit of detection = 4.7 ng L-1, limit of quantification = 16 ng L-1, RSD% = 4 (n = 6, 100 ng L-1), linear range: from LOQ up to 200 ng L-1 and a lifetime of over 600 cycles with no obstructions to the free movement of fluids, material bleeding or changes in the analytical sensitivity. The proposed method was shown to be tolerant to several ions typically present in natural waters and was successfully applied to the determination of traces of Cd(ii) in real samples. A full discussion of the main findings with emphasis on the metal ion/filling interaction is provided. © 2018 The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Composite materials based on hybrid mesoporous solids for flow-through determination of ultratrace levels of Cd(ii)
Autor:Minaberry, Y.S.; Stripeikis, J.; Tudino, M.
Filiación:Laboratorio de Trazas, INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II C1428EHA, Buenos Aires, Argentina
Departamento de Ingeniería Química, Instituto Tecnológico de Buenos Aires. Av Eduardo Madero 399 C1106, Buenos Aires, Argentina
Palabras clave:Absorption spectroscopy; Adsorption; Atomic absorption spectrometry; Chlorine compounds; Hybrid materials; Mesoporous materials; Metal ions; Metals; Phase separation; Silica; Trace analysis; Adsorption capacities; Electrothermal atomizer; Flow-through systems; Graphite furnace atomic absorption spectrometry; Limit of quantifications; Operational variables; Poly (vinyl alcohol) (PVA); Solid-phase extraction; Cadmium compounds
Año:2018
Volumen:10
Número:26
Página de inicio:3144
Página de fin:3152
DOI: http://dx.doi.org/10.1039/c8ay00879e
Título revista:Analytical Methods
Título revista abreviado:Anal. Methods
ISSN:17599660
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17599660_v10_n26_p3144_Minaberry

Referencias:

  • Cadmium (1993) IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, 58, pp. 119-238
  • Health Organization, W., (2006) Guidelines for Drinking-Water Quality, 1. , Geneva, 3rd edn, recommendations
  • (2003) National Primary Drinking Water Standards
  • Płotka-Wasylka, J., Szczepańska, N., De La Guardia, M., Namieśnik, J., (2016) TrAC, Trends Anal. Chem., 77, pp. 23-43
  • (2015), http://www.waters.com/waters/en_PL/Beginner's-Guide-to-SPE-[Solid-Phase-Extraction]/nav.htm?locale=en_PL&cid=134721476; Buszewski, B., Szultka, M., (2012) Crit. Rev. Anal. Chem., 42, pp. 198-213
  • Türker, A.R., (2012) Sep. Purif. Rev., 41, pp. 169-206
  • Hu, B., He, M., Chen, B., (2015) Anal. Bioanal. Chem., 407, pp. 2685-2710
  • Clough, R., Harrington, C.F., Hill, S.J., Madrid, Y., Tyson, J.F., (2013) J. Anal. At. Spectrom., 28, p. 1153
  • Kim, M.L., Tudino, M.B., (2010) Talanta, 82, pp. 923-930
  • Walcarius, A., Delacôte, C., (2005) Anal. Chim. Acta, 547, pp. 3-13
  • Valtchev, V., Tosheva, L., (2013) Chem. Rev., 113, pp. 6734-6760
  • Pyrzynska, K., (2010) TrAC, Trends Anal. Chem., 29, pp. 718-727
  • Kocaoba, S., (2007) J. Hazard. Mater., 147, pp. 488-496
  • Demirbas, A., Pehlivan, E., Gode, F., Altun, T., Arslan, G., (2005) J. Colloid Interface Sci., 282, pp. 20-25
  • Wang, L., Hang, X., Chen, Y., Wang, Y., Feng, X., (2016) Anal. Lett., 49, pp. 818-830
  • Wen, S., Zhu, X., Huang, Q., Wang, H., Xu, W., Zhou, N., (2014) Microchim. Acta, 181, pp. 1041-1047
  • Mohajer, S., Chamsaz, M., Entezari, M.H., (2014) Anal. Methods, 6, pp. 9490-9496
  • Augusto, F., Hantao, L.W., Noroska, G.S., Braga, S.C.G.N., (2013) TrAC, Trends Anal. Chem., 43, pp. 14-23
  • Prasada Rao, T., Praveen, R.S., Daniel, S., (2004) Crit. Rev. Anal. Chem., 34, pp. 177-193
  • Ahmad, A., Siddique, J.A., Laskar, M.A., Kumar, R., Mohd-Setapar, S.H., Khatoon, A., Shiekh, R.A., (2015) J. Environ. Sci., 31, pp. 104-123
  • Harma, N.S., Tiwari, S., Saxena, R., (2016) RSC Adv., 6, pp. 10775-10782
  • Walcarius, A., Collinson, M.M., (2009) Annu. Rev. Anal. Chem., 2, pp. 121-143
  • Hoffmann, F., Cornelius, M., Morell, J., Fröba, M., (2006) Angew. Chem., Int. Ed., 45, pp. 3216-3251
  • Hamoudi, S., El-Nemr, A., Belkacemi, K., (2010) J. Colloid Interface Sci., 343, pp. 615-621
  • Parida, K.M., Rath, D., (2009) J. Mol. Catal. A: Chem., 310, pp. 93-100
  • Sierra, I., Pérez-Quintanilla, D., (2013) Chem. Soc. Rev., 42, pp. 3792-3807
  • Moulay, S., (2015) Polym.-Plast. Technol. Eng., 54, pp. 1289-1319
  • Yu Zhao, Y., Zhai, S., Bin Zhai, B., An, Q., (2012) J. Sol-Gel Sci. Technol., 62, pp. 177-185
  • Zhao, B., He, M., Chen, B., Hu, B., (2015) Spectrochim. Acta, Part B, 107, pp. 115-124
  • Imamoglu, M., Pérez-Quintanilla, D., Sierra, I., (2016) Microporous Mesoporous Mater., 229, pp. 90-97
  • Heidari, A., Younesi, H., Mehraban, Z., (2009) Chem. Eng. J., 153, pp. 70-79
  • Silva, L.C.C.D., Santos, L.B.O.D., Abate, G., Cosentino, I.C., Fantini, M.C.A., Masini, J.C., Matos, J.R., (2008) Microporous Mesoporous Mater., 110, pp. 250-259
  • Lu, Y.K., Tan, J., Yan, X.P., (2004) Anal. Chem., 77, pp. 453-457
  • Irani, M., Keshtkar, A.R., Moosavian, M.A., (2012) Chem. Eng. J., 200, pp. 192-201
  • Irani, M., Keshtkar, A.R., Mousavian, M.A., (2011) Chem. Eng. J., 175, pp. 251-259
  • Ganan, J., Morante-Zarcero, S., Perez-Quintanilla, D., Sierra, I., (2015) Anal. Methods, 7, pp. 4740-4749
  • Chiron, N., Guilet, R., Deydier, E., (2003) Water Res., 37, pp. 3079-3086
  • Singare, P.U., Lokhande, R.S., Madyal, R.S., (2011) Open J. Phys. Chem., 1, pp. 45-54
  • Mansur, H.S., Oréfice, R.L., Mansur, A.A.P., (2004) Polymer, 45, pp. 7193-7202
  • Stumm, W., Morgan, J.J., (1995) Aquatic Chemistry, , Wiley &Sons, New York, 3rd edn

Citas:

---------- APA ----------
Minaberry, Y.S., Stripeikis, J. & Tudino, M. (2018) . Composite materials based on hybrid mesoporous solids for flow-through determination of ultratrace levels of Cd(ii). Analytical Methods, 10(26), 3144-3152.
http://dx.doi.org/10.1039/c8ay00879e
---------- CHICAGO ----------
Minaberry, Y.S., Stripeikis, J., Tudino, M. "Composite materials based on hybrid mesoporous solids for flow-through determination of ultratrace levels of Cd(ii)" . Analytical Methods 10, no. 26 (2018) : 3144-3152.
http://dx.doi.org/10.1039/c8ay00879e
---------- MLA ----------
Minaberry, Y.S., Stripeikis, J., Tudino, M. "Composite materials based on hybrid mesoporous solids for flow-through determination of ultratrace levels of Cd(ii)" . Analytical Methods, vol. 10, no. 26, 2018, pp. 3144-3152.
http://dx.doi.org/10.1039/c8ay00879e
---------- VANCOUVER ----------
Minaberry, Y.S., Stripeikis, J., Tudino, M. Composite materials based on hybrid mesoporous solids for flow-through determination of ultratrace levels of Cd(ii). Anal. Methods. 2018;10(26):3144-3152.
http://dx.doi.org/10.1039/c8ay00879e