Artículo

Santpere, G.; Carnero-Montoro, E.; Petit, N.; Serra, F.; Hvilsom, C.; Rambla, J.; Heredia-Genestar, J.M.; Halligan, D.L.; Dopazo, H.; Navarro, A.; Bosch, E. "Analysis of five gene sets in chimpanzees suggests decoupling between the action of selection on protein-coding and on noncoding elements" (2015) Genome Biology and Evolution. 7(6):1490-1505
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We set out to investigate potential differences and similarities between the selective forces acting upon the coding and noncoding regions of five different sets of genes defined according to functional and evolutionary criteria: 1) two reference gene sets presenting accelerated and slow rates of protein evolution (the Complement and Actin pathways); 2) a set of genes with evidence of accelerated evolution in at least one of their introns; and 3) two gene sets related to neurological function (Parkinson's and Alzheimer's diseases). To that effect, we combine human-chimpanzee divergence patterns with polymorphism data obtained from target resequencing 20 central chimpanzees, our closest relatives with largest long-term effective population size. By using the distribution of fitness effect-alpha extension of the McDonald-Kreitman test, we reproduce inferences of rates of evolution previously based only on divergence data on both coding and intronic sequences and also obtain inferences for other classes of genomic elements (untranslated regions, promoters, and conserved noncoding sequences). Our results suggest that 1) the distribution of fitness effect-alpha method successfully helps distinguishing different scenarios of accelerated divergence (adaptation or relaxed selective constraints) and 2) the adaptive history of coding and noncoding sequences within the gene sets analyzed is decoupled. © The Author(s) 2015.

Registro:

Documento: Artículo
Título:Analysis of five gene sets in chimpanzees suggests decoupling between the action of selection on protein-coding and on noncoding elements
Autor:Santpere, G.; Carnero-Montoro, E.; Petit, N.; Serra, F.; Hvilsom, C.; Rambla, J.; Heredia-Genestar, J.M.; Halligan, D.L.; Dopazo, H.; Navarro, A.; Bosch, E.
Filiación:Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
Structural Genomics Team, Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
Research and Conservation, Copenhagen Zoo, Frederiksberg, Denmark
Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
Biomedical Genomics and Evolution Laboratory, Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
National Institute for Bioinformatics (INB), PRBB, Barcelona, Spain
Institució Catalana de Recerca i Estudis Avançats (ICREA), PRBB, Barcelona, Spain
Center for Genomic Regulation (CRG), PRBB, Barcelona, Spain
Palabras clave:Alzheimer; Biochemical pathways; Chimpanzee; Distribution of fitness effects; Fraction of adaptive substitution (α) and adaptive substitution rate (ωa); Natural selection; Parkinson; actin; complement; untranslated region; animal; gene; genetic selection; genetics; human; intron; molecular evolution; mutation; open reading frame; Pan troglodytes; promoter region; single nucleotide polymorphism; untranslated region; Actins; Animals; Complement System Proteins; Evolution, Molecular; Genes; Humans; Introns; Mutation; Open Reading Frames; Pan troglodytes; Polymorphism, Single Nucleotide; Promoter Regions, Genetic; Selection, Genetic; Untranslated Regions
Año:2015
Volumen:7
Número:6
Página de inicio:1490
Página de fin:1505
DOI: http://dx.doi.org/10.1093/gbe/evv082
Título revista:Genome Biology and Evolution
Título revista abreviado:Genome Biolog. Evol.
ISSN:17596653
CAS:complement, 9007-36-7; Actins; Complement System Proteins; Untranslated Regions
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17596653_v7_n6_p1490_Santpere

Referencias:

  • Andolfatto, P., Adaptive evolution of non-coding DNA in drosophila (2005) Nature, 437, pp. 1149-1152
  • Arbiza, L., Selective pressures at a codon-level predict deleterious mutations in human disease genes (2006) J Mol Biol., 358, pp. 1390-1404
  • Berglund, J., Pollard, K.S., Webster, M.T., Hotspots of biased nucleotide substitutions in human genes (2009) PLoS Biol., 7, p. e26
  • Bierne, N., Eyre-Walker, A., The genomic rate of adaptive amino acid substitution in drosophila (2004) Mol Biol EVol., 21, pp. 1350-1360
  • Boyko, A.R., Assessing the evolutionary impact of amino acid mutations in the human genome (2008) PLoS Genet., 4
  • Bustamante, C.D., The cost of inbreeding in arabidopsis (2002) Nature, 416, pp. 531-534
  • Bustamante, C.D., Natural selection on protein-coding genes in the human genome (2005) Nature, 437, pp. 1153-1157
  • Charlesworth, J., Eyre-Walker, A., The rate of adaptive evolution in enteric bacteria (2006) Mol Biol EVol., 23, pp. 1348-1356
  • Elyashiv, E., Shifts in the intensity of purifying selection: An analysis of genome-wide polymorphism data from two closely related yeast species (2010) Genome Res., 20, pp. 1558-1573
  • Erwin, J.M., Hof, P.R., Ely, J.J., Perl, D.P., One gerontology: Advancing understanding of aging through studies of great apes and other primates (2002) Aging in Nonhuman Primates, Interdiscipl Top Gerontol, 31, pp. 1-21. , Erwin JM, Rockville M, Hof PR, editors Basel: Karger
  • Eyre-Walker, A., The genomic rate of adaptive evolution (2006) Trends Ecol EVol., 21, pp. 569-575
  • Eyre-Walker, A., Keightley, P.D., The distribution of fitness effects of new mutations (2007) Nat Rev Genet., 8, pp. 610-618
  • Eyre-Walker, A., Keightley, P.D., Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change (2009) Mol Biol EVol., 26, pp. 2097-2108
  • Fay, J.C., Weighing the evidence for adaptation at the molecular level (2011) Trends Genet., 27, pp. 343-349
  • Fay, J.C., Wyckoff, G.J., Wu, C.I., Positive and negative selection on the human genome (2001) Genetics, 158, pp. 1227-1234
  • Ferrer-Admetlla, A., Balancing selection is the main force shaping the evolution of innate immunity genes (2008) J Immunol., 181, pp. 1315-1322
  • Gazave, E., Marques-Bonet, T., Fernando, O., Charlesworth, B., Navarro, A., Patterns and rates of intron divergence between humans and chimpanzees (2007) Genome Biol., 8, p. R21
  • Gearing, M., Rebeck, G.W., Hyman, B.T., Tigges, J., Mirra, S.S., Neuropathology and apolipoprotein E profile of aged chimpanzees: Implications for Alzheimer disease (1994) Proc Natl Acad Sci USA, 91, pp. 9382-9386
  • Gearing, M., Tigges, J., Mori, H., Mirra, S.S., Beta-amyloid (A beta) deposition in the brains of aged orangutans (1997) Neurobiol Aging., 18, pp. 139-146
  • Halligan, D.L., Contributions of protein-coding and regulatory change to adaptive molecular evolution in murid rodents (2013) PLoS Genet., 9
  • Hamilton, B.A., Alpha-synuclein A53T substitution associated with Parkinson disease also marks the divergence of old world and new world primates (2004) Genomics, 83, pp. 739-742
  • Haygood, R., Fedrigo, O., Hanson, B., Yokoyama, K.D., Wray, G.A., Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution (2007) Nat Genet., 39, pp. 1140-1144
  • Holzer, M., Craxton, M., Jakes, R., Arendt, T., Goedert, M., Tau gene (MAPT) sequence variation among primates (2004) Gene, 341, pp. 313-322
  • Hvilsom, C., Extensive X-linked adaptive evolution in central chimpanzees (2011) Proc Natl Acad Sci USA, 109, pp. 2054-2059
  • Jensen, J.D., Bachtrog, D., Characterizing the influence of effective population size on the rate of adaptation: Gillespie's darwin domain (2011) Genome Biol EVol., 3, pp. 687-701
  • Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., Hattori, M., The KEGG resource for deciphering the genome (2004) Nucleic Acids Res., 32, pp. D277-D280
  • Keightley, P.D., Eyre-Walker, A., Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies (2007) Genetics, 177, pp. 2251-2261
  • Keightley, P.D., Lercher, M.J., Eyre-Walker, A., Evidence for widespread degradation of gene control regions in hominid genomes (2005) PLoS Biol., 3, p. e42
  • Kimura, N., Senile plaques in an aged western lowland gorilla (2001) Exp Anim., 50, pp. 77-81
  • Kosiol, C., Patterns of positive selection in six mammalian genomes (2008) PLoS Genet., 4
  • Kousathanas, A., Oliver, F., Halligan, D.L., Keightley, P.D., Positive and negative selection on noncoding DNA close to protein-coding genes in wild house mice (2011) Mol Biol EVol., 28, pp. 1183-1191
  • Lanfear, R., Kokko, H., Eyre-Walker, A., Population size and the rate of evolution (2014) Trends Ecol EVol., 29, pp. 33-41
  • Lawrie, D.S., Messer, P.W., Hershberg, R., Petrov, D.A., Strong purifying selection at synonymous sites in D. Melanogaster (2013) PLoS Genet., 9
  • Lee, S.H., Dominguez, R., Regulation of actin cytoskeleton dynamics in cells (2010) Mol Cells., 29, pp. 311-325
  • Mackay, T.F., The drosophila melanogaster genetic reference panel (2012) Nature, 482, pp. 173-178
  • McDonald, J.H., Kreitman, M., Adaptive protein evolution at the adh locus in drosophila (1991) Nature, 351, pp. 652-654
  • Pond, S.L., Frost, S.D., Muse, S.V., HyPhy: Hypothesis testing using phylogenies (2005) Bioinformatics, 21, pp. 676-679
  • Prado-Martinez, J., Great ape genetic diversity and population history (2013) Nature, 499, pp. 471-475
  • Rosen, R.F., Tauopathy with paired helical filaments in an aged chimpanzee (2008) J Comp Neurol., 509, pp. 259-270
  • Serra, F., Arbiza, L., Dopazo, J., Dopazo, H., Natural selection on functional modules, a genome-wide analysis (2011) PLoS Comput Biol., 7
  • Sherwood, C.C., Aging of the cerebral cortex differs between humans and chimpanzees (2011) Proc Natl Acad Sci USA, 108, pp. 13029-13034
  • Smith, N.G., Eyre-Walker, A., Adaptive protein evolution in drosophila (2002) Nature, 415, pp. 1022-1024
  • Welch, J.J., Estimating the genomewide rate of adaptive protein evolution in drosophila (2006) Genetics, 173, pp. 821-837

Citas:

---------- APA ----------
Santpere, G., Carnero-Montoro, E., Petit, N., Serra, F., Hvilsom, C., Rambla, J., Heredia-Genestar, J.M.,..., Bosch, E. (2015) . Analysis of five gene sets in chimpanzees suggests decoupling between the action of selection on protein-coding and on noncoding elements. Genome Biology and Evolution, 7(6), 1490-1505.
http://dx.doi.org/10.1093/gbe/evv082
---------- CHICAGO ----------
Santpere, G., Carnero-Montoro, E., Petit, N., Serra, F., Hvilsom, C., Rambla, J., et al. "Analysis of five gene sets in chimpanzees suggests decoupling between the action of selection on protein-coding and on noncoding elements" . Genome Biology and Evolution 7, no. 6 (2015) : 1490-1505.
http://dx.doi.org/10.1093/gbe/evv082
---------- MLA ----------
Santpere, G., Carnero-Montoro, E., Petit, N., Serra, F., Hvilsom, C., Rambla, J., et al. "Analysis of five gene sets in chimpanzees suggests decoupling between the action of selection on protein-coding and on noncoding elements" . Genome Biology and Evolution, vol. 7, no. 6, 2015, pp. 1490-1505.
http://dx.doi.org/10.1093/gbe/evv082
---------- VANCOUVER ----------
Santpere, G., Carnero-Montoro, E., Petit, N., Serra, F., Hvilsom, C., Rambla, J., et al. Analysis of five gene sets in chimpanzees suggests decoupling between the action of selection on protein-coding and on noncoding elements. Genome Biolog. Evol. 2015;7(6):1490-1505.
http://dx.doi.org/10.1093/gbe/evv082